20 research outputs found

    Analysis of the performance of a particle velocity sensor between two cylindrical obstructions

    Get PDF
    The performance of an acoustic particle velocity sensor that is placed between two cylindrical objects has been analyzed both analytically and by means of finite volume simulations on fluid dynamics. The results are compared with acoustic experiments that show a large magnification of the output signal of the particle velocity sensor due to the mounting of the sensor between two cylinders. The influences of this construction consist of an attenuation of particle velocities at frequencies below a few hertz, whereas signals in the higher frequency range are amplified, up to approximately three times 10 dB in a frequency range between 50 and 1000 Hz. The theoretical analysis is based on the derivation of the stream function for the situation of two long cylinders immersed in an oscillating incompressible viscous fluid, at low Reynolds numbers. The results lead to an improved insight into the effects of viscosity and fluid flow that play a role in acoustic measurements and open the way for further optimization of the sensitivity of the sensor

    On the zeta-function regularization of a two-dimensional series of epsten-Hurwitz type

    Get PDF
    For a few years now, the study of quantum field theories in partially compactified space-time manifolds has acquired increasing importance in several domains of quantum physics. Let me just mention the issues of dimensional reduction and spontaneous compactification, and the multiple questions associated with the study of quantum field theories in the presence of boundaries (like the Casimir effect) and on curved space-time (manifolds with curvature and nontrivial topology), a step towards quantum gravity

    Parallel optical readout of cantilever arrays in dynamic mode

    No full text
    Parallel frequency readout of an array of cantilevers is demonstrated using optical beam deflection with a single laser-diode pair. Multi-frequency addressing makes the individual nanomechanical response of each cantilever distinguishable within the received signal. Addressing is accomplished by exciting the array with the sum of all cantilever resonant frequencies. This technique requires considerably less hardware compared to other parallel optical readout techniques. Readout is demonstrated in beam deflection mode and interference mode. Many cantilevers can be readout in parallel, limited by the oscillators' quality factor and available bandwidth. The proposed technique facilitates parallelism in applications at the nano-scale, including probe-based data storage and biological sensing
    corecore