10 research outputs found

    Clinical validation of cutoff target ranges in newborn screening of metabolic disorders by tandem mass spectrometry: a worldwide collaborative project.

    Get PDF

    Predicting novel therapies and targets: regulation of notch3 by the Bromodomain protein BRD4

    No full text
    Systematic approaches for accurate repurposing of targeted therapies are needed. We developed and aimed to biologically validate our therapy predicting tool (TPT) for the repurposing of targeted therapies for specific tumor types by testing the role of Bromodomain and Extra-Terminal motif inhibitors (BETi) in inhibiting BRD4 function and downregulating Notch3 signaling in ovarian cancer.Utilizing established ovarian cancer preclinical models, we carried out in vitro and in vivo studies with clinically relevant BETis to determine their therapeutic effect and impact on Notch3 signaling.Treatment with BETis or siRNA-mediated BRD4 knockdown resulted in decreased cell viability, reduced cell proliferation, and increased cell apoptosis in vitro. In vivo studies with orthotopic mouse models demonstrated that treatment with BETi decreased tumor growth. In addition, knockdown of BRD4 with doxycycline-inducible shRNA increased survival up to 50% (P < 0.001). Treatment with either BETis or BRD4 siRNA decreased Notch3 expression both in vitro and in vivo BRD4 inhibition also decreased the expression of NOTCH3 targets, including HES1 Chromatin immunoprecipitation revealed that BRD4 was present at the NOTCH3 promoter.Our findings provide biological validation for the TPT by demonstrating that BETis can be an effective therapeutic agent for ovarian cancer by downregulating Notch3 expression.The TPT could rapidly identify candidate drugs for ovarian or other cancers along with novel companion biomarkers

    Protein phosphatase 1 regulates assembly and function of the β-catenin degradation complex

    No full text
    The Wnt/β-catenin signaling pathway is critical in both cellular proliferation and organismal development. However, how the β-catenin degradation complex is inhibited upon Wnt activation remains unclear. Using a directed RNAi screen we find that protein phosphatase 1 (PP1), a ubiquitous serine/threonine phosphatase, is a novel potent positive physiologic regulator of the Wnt/β-catenin signaling pathway. PP1 expression synergistically activates, and inhibition of PP1 inhibits, Wnt/β-catenin signaling in Drosophila and mammalian cells as well as in Xenopus embryos. The data suggest that PP1 controls Wnt signaling through interaction with, and regulated dephosphorylation of, axin. Inhibition of PP1 leads to enhanced phosphorylation of specific sites on axin by casein kinase I. Axin phosphorylation markedly enhances the binding of glycogen synthase kinase 3, leading to a more active β-catenin destruction complex. Wnt-regulated changes in axin phosphorylation, mediated by PP1, may therefore determine β-catenin transcriptional activity. Specific inhibition of PP1 in this pathway may offer therapeutic approaches to disorders with increased β-catenin signaling

    Intercalated discs: cellular adhesion and signaling in heart health and diseases

    No full text

    Clinical validation of cutoff target ranges in newborn screening of metabolic disorders by tandem mass spectrometry: A worldwide collaborative project.

    No full text
    Purpose: To achieve clinical validation of cutoff values for newborn screening by tandem mass 215 spectrometry through a worldwide collaboration. Methods: Cumulative percentiles of amino 216 acids and acylcarnitines in dried blood spots of approximately 30 million normal newborns and 217 10,615 true positive cases are compared to assign clinical significance, which is achieved when 218 the median of a disease range is either >99%ile or <1%ile of the normal population. The cutoff 219 target ranges of analytes and ratios are then defined as the interval between the limits of the two 220 populations. When overlaps occur, adjustments are made to maximize sensitivity and specificity 221 taking in consideration all available factors. Results: As of December 1, 2010, 129 sites in 45 222 countries have uploaded to the project website a total of 23,970 percentile data points, 558,168 223 analyte results of 10,615 true positive cases with 64 conditions, and 5,088 cutoff values. The 224 average rate of submission of true positive cases between December 1, 2008 and December 1, 225 2010 was 4.7 cases per day (3,418 cases). This cumulative evidence generated 91 and 23 high 226 and low target cutoff ranges, respectively. The overall proportion of cutoff values within the 227 respective target range was 43% (2,176/5,088). Conclusions: An unprecedented level of 228 cooperation and collaboration has allowed the objective definition of cutoff target ranges for 114 229 markers applied to newborn screening of rare metabolic disorders. This set of data could be used 230 as baseline for monitoring of future performance

    Clinical validation of cutoff target ranges in newborn screening of metabolic disorders by tandem mass spectrometry: A worldwide collaborative project

    Get PDF
    PURPOSE:: To achieve clinical validation of cutoff values for newborn screening by tandem mass spectrometry through a worldwide collaborative effort. METHODS:: Cumulative percentiles of amino acids and acylcarnitines in dried blood spots of approximately 25-30 million normal newborns and 10,742 deidentified true positive cases are compared to assign clinical significance, which is achieved when the median of a disorder range is, and usually markedly outside, either the 99th or the 1st percentile of the normal population. The cutoff target ranges of analytes and ratios are then defined as the interval between selected percentiles of the two populations. When overlaps occur, adjustments are made to maximize sensitivity and specificity taking all available factors into consideration. RESULTS:: As of December 1, 2010, 130 sites in 45 countries have uploaded a total of 25,114 percentile data points, 565,232 analyte results of true positive cases with 64 conditions, and 5,341 cutoff values. The average rate of submission of true positive cases between December 1, 2008, and December 1, 2010, was 5.1 cases/day. This cumulative evidence generated 91 high and 23 low cutoff target ranges. The overall proportion of cutoff values within the respective target range was 42% (2,269/5,341). CONCLUSION:: An unprecedented level of cooperation and collaboration has allowed the objective definition of cutoff target ranges for 114 markers to be applied to newborn screening of rare metabolic disorders. © 2011 Lippincott Williams &amp; Wilkins

    Hepatocyte Growth, Proliferation and Experimental Carcinogenesis

    No full text
    corecore