1,548,114 research outputs found

    Conformal anomaly in 2d dilaton-scalar theory

    Full text link
    The discrepancy between the anomaly found by Bousso and Hawking (hep-th/9705236) and that of other workers is explained by the omission of a zero mode contribution to the effective action.Comment: 5 pages, JyTeX. References added with brief remar

    Mean Field Theoretical Structure of He and Be Isotopes

    Full text link
    The structures of He and Be even-even isotopes are investigated using an axially symmetric Hartree-Fock approach with a Skyrme-IIIls mean field potential. In these simple HF calculations, He and Be isotopes appear to be prolate in their ground states and Be isotopes have oblate shape isomeric states. It is also shown that there exists a level crossing when the nuclear shape changes from the prolate state to the oblate state. The single neutron levels of Be isotopes exhibit a neutron magic number 6 instead of 8 and show that the level inversion between 1/2- and 1/2+ levels occurs only for a largely deformed isotope. Protons are bound stronger in the isotope with more neutrons while neutron levels are somewhat insensitive to the number of neutrons and thus the nuclear size and also the neutron skin become larger as the neutron number increases. In these simple calculations with Skyrme-IIIls interaction no system with a clear indication of neutron halo was found among He and Be isotopes. Instead of it we have found 8He+2n, 2n+8He+2n, and 16Be+2n like chain structures with clusters of two correlated neutrons. It is also shown that 8He and 14Be in their ground states are below the neutron drip line in which all nucleons are bound with negative energy and that 16Be in its ground state is beyond the neutron drip line with two neutrons in positive energy levels.Comment: CM energy correction, 1 figure and more discussions adde

    Thermodynamics of toroidal black holes

    Full text link
    The thermodynamical properties of toroidal black holes in the grand canonical ensemble are investigated using York's formalism. The black hole is enclosed in a cavity with finite radius where the temperature and electrostatic potential are fixed. The boundary conditions allow one to compute the relevant thermodynamical quantities, e.g. thermal energy, entropy and specific heat. This black hole is thermodynamically stable and dominates the grand partition function. This means that there is no phase transition, as the one encountered for spherical black holes.Comment: 11 pages, 2 eps figures, revte

    Shuttle S-band communications technical concepts

    Get PDF
    Using the S-band communications system, shuttle orbiter can communicate directly with the Earth via the Ground Spaceflight Tracking and Data Network (GSTDN) or via the Tracking and Data Relay Satellite System (TDRSS). The S-band frequencies provide the primary links for direct Earth and TDRSS communications during all launch and entry/landing phases of shuttle missions. On orbit, S-band links are used when TDRSS Ku-band is not available, when conditions require orbiter attitudes unfavorable to Ku-band communications, or when the payload bay doors are closed. the S-band communications functional requirements, the orbiter hardware configuration, and the NASA S-band communications network are described. The requirements and implementation concepts which resulted in techniques for shuttle S-band hardware development discussed include: (1) digital voice delta modulation; (2) convolutional coding/Viterbi decoding; (3) critical modulation index for phase modulation using a Costas loop (phase-shift keying) receiver; (4) optimum digital data modulation parameters for continuous-wave frequency modulation; (5) intermodulation effects of subcarrier ranging and time-division multiplexing data channels; (6) radiofrequency coverage; and (7) despreading techniques under poor signal-to-noise conditions. Channel performance is reviewed

    Thermodynamics of Reissner-Nordstrom-anti-de Sitter black holes in the grand canonical ensemble

    Full text link
    The thermodynamical properties of the Reissner-Nordstr\"om-anti-de Sitter black hole in the grand canonical ensemble are investigated using York's formalism. The black hole is enclosed in a cavity with finite radius where the temperature and electrostatic potential are fixed. The boundary conditions allow us to compute the relevant thermodynamical quantities, e.g. thermal energy, entropy and charge. The stability conditions imply that there are thermodynamically stable black hole solutions, under certain conditions. Instantons with negative heat capacity are also found.Comment: 15 pages, 9 figures, Revtex. Published version. Changes: figures added to tex
    corecore