836 research outputs found

    Using Abrupt Changes in Magnetic Susceptibility within Type-II Superconductors to Explore Global Decoherence Phenomena

    Full text link
    A phenomenon of a periodic staircase of macroscopic jumps in the admitted magnetic field has been observed, as the magnitude of an externally applied magnetic field is smoothly increased or decreased upon a superconducting (SC) loop of type II niobium-titanium wire which is coated with a non-superconducting layer of copper. Large temperature spikes were observed to occur simultaneously with the jumps, suggesting brief transitions to the normal state, caused by en masse motions of Abrikosov vortices. An experiment that exploits this phenomenon to explore the global decoherence of a large superconducting system will be discussed, and preliminary data will be presented. Though further experimentation is required to determine the actual decoherence rate across the superconducting system, multiple classical processes are ruled out, suggesting that jumps in magnetic flux are fully quantum mechanical processes which may correspond to large group velocities within the global Cooper pair wavefunction.Comment: 13 pages, 4 figures, part of proceedings for FQMT 2011 conference in Prague, Czech Republi

    Quantum Noise and Superluminal Propagation

    Get PDF
    Causal "superluminal" effects have recently been observed and discussed in various contexts. The question arises whether such effects could be observed with extremely weak pulses, and what would prevent the observation of an "optical tachyon." Aharonov, Reznik, and Stern (ARS) [Phys. Rev. Lett., vol. 81, 2190 (1998)] have argued that quantum noise will preclude the observation of a superluminal group velocity when the pulse consists of one or a few photons. In this paper we reconsider this question both in a general framework and in the specific example, suggested by Chiao, Kozhekin, and Kurizki [Phys. Rev. Lett., vol. 77, 1254 (1996)], of off-resonant, short-pulse propagation in an optical amplifier. We derive in the case of the amplifier a signal-to-noise ratio that is consistent with the general ARS conclusions when we impose their criteria for distinguishing between superluminal propagation and propagation at the speed c. However, results consistent with the semiclassical arguments of CKK are obtained if weaker criteria are imposed, in which case the signal can exceed the noise without being "exponentially large." We show that the quantum fluctuations of the field considered by ARS are closely related to superfluorescence noise. More generally we consider the implications of unitarity for superluminal propagation and quantum noise and study, in addition to the complete and truncated wavepackets considered by ARS, the residual wavepacket formed by their difference. This leads to the conclusion that the noise is mostly luminal and delayed with respect to the superluminal signal. In the limit of a very weak incident signal pulse, the superluminal signal will be dominated by the noise part, and the signal-to-noise ratio will therefore be very small.Comment: 30 pages, 1 figure, eps

    Can a charged ring levitate a neutral, polarizable object? Can Earnshaw's Theorem be extended to such objects?

    Get PDF
    Stable electrostatic levitation and trapping of a neutral, polarizable object by a charged ring is shown to be theoretically impossible. Earnshaw's Theorem precludes the existence of such a stable, neutral particle trap.Comment: 11 pages, 1 figur

    Effective photon-photon interaction in a two-dimensional "photon fluid"

    Full text link
    We formulate an effective theory for the atom-mediated photon-photon interactions in a two-dimensional ``photon fluid'' confined in a Fabry-Perot resonator. With the atoms modelled by a collection of anharmonic Lorentz oscillators, the effective interaction is evaluated to second order in the coupling constant (the anharmonicity parameter). The interaction has the form of a renormalized two-dimensional delta-function potential, with the renormalization scale determined by the physical parameters of the system, such as density of atoms and the detuning of the photons relative to the resonance frequency of the atoms. For realistic values of the parameters, the perturbation series has to be resummed, and the effective interaction becomes independent of the ``bare'' strength of the anharmonic term. The resulting expression for the non-linear Kerr susceptibility, is parametrically equal to the one found earlier for a dilute gas of two-level atoms. Using our result for the effective interaction parameter, we derive conditions for the formation of a photon fluid, both for Rydberg atoms in a microwave cavity and for alkali atoms in an optical cavity.Comment: 25 pages (revtex4), including 2 figure

    Signal velocity, causality, and quantum noise in superluminal light pulse propagation

    Full text link
    We consider pulse propagation in a linear anomalously dispersive medium where the group velocity exceeds the speed of light in vacuum (c) or even becomes negative. A signal velocity is defined operationally based on the optical signal-to-noise ratio, and is computed for cases appropriate to the recent experiment where such a negative group velocity was observed. It is found that quantum fluctuations limit the signal velocity to values less than c.Comment: 4 Journal pages, 3 figure

    Efficient Reactive Brownian Dynamics

    Full text link
    We develop a Split Reactive Brownian Dynamics (SRBD) algorithm for particle simulations of reaction-diffusion systems based on the Doi or volume reactivity model, in which pairs of particles react with a specified Poisson rate if they are closer than a chosen reactive distance. In our Doi model, we ensure that the microscopic reaction rules for various association and disassociation reactions are consistent with detailed balance (time reversibility) at thermodynamic equilibrium. The SRBD algorithm uses Strang splitting in time to separate reaction and diffusion, and solves both the diffusion-only and reaction-only subproblems exactly, even at high packing densities. To efficiently process reactions without uncontrolled approximations, SRBD employs an event-driven algorithm that processes reactions in a time-ordered sequence over the duration of the time step. A grid of cells with size larger than all of the reactive distances is used to schedule and process the reactions, but unlike traditional grid-based methods such as Reaction-Diffusion Master Equation (RDME) algorithms, the results of SRBD are statistically independent of the size of the grid used to accelerate the processing of reactions. We use the SRBD algorithm to compute the effective macroscopic reaction rate for both reaction- and diffusion-limited irreversible association in three dimensions. We also study long-time tails in the time correlation functions for reversible association at thermodynamic equilibrium. Finally, we compare different particle and continuum methods on a model exhibiting a Turing-like instability and pattern formation. We find that for models in which particles diffuse off lattice, such as the Doi model, reactions lead to a spurious enhancement of the effective diffusion coefficients.Comment: To appear in J. Chem. Phy

    Metal Enrichment of the Intergalactic Medium in Cosmological Simulations

    Get PDF
    Observations have established that the diffuse intergalactic medium (IGM) at z ~ 3 is enriched to ~0.1-1% solar metallicity and that the hot gas in large clusters of galaxies (ICM) is enriched to 1/3-1/2 solar metallicity at z=0. Metals in the IGM may have been removed from galaxies (in which they presumably form) during dynamical encounters between galaxies, by ram-pressure stripping, by supernova-driven winds, or as radiation-pressure driven dust efflux. This study develops a method of investigating the chemical enrichment of the IGM and of galaxies, using already completed cosmological simulations. To these simulations, we add dust and (gaseous) metals, distributing the dust and metals in the gas according to three simple parameterized prescriptions, one for each enrichment mechanism. These prescriptions are formulated to capture the basic ejection physics, and calibrated when possible with empirical data. Our results indicate that dynamical removal of metals from >~ 3*10^8 solar mass galaxies cannot account for the observed metallicity of low-column density Ly-alpha absorbers, and that dynamical removal from >~ 3*10^10 solar mass galaxies cannot account for the ICM metallicities. Dynamical removal also fails to produce a strong enough mass-metallicity relation in galaxies. In contrast, either wind or radiation-pressure ejection of metals from relatively large galaxies can plausibly account for all three sets of observations (though it is unclear whether metals can be distributed uniformly enough in the low-density regions without overly disturbing the IGM, and whether clusters can be enriched quite as much as observed). We investigate in detail how our results change with variations in our assumed parameters, and how results for the different ejection processes compare. (Abridged)Comment: Minor revision, 1 figure added addressing diffusion of metals after their ejection. Accepted by ApJ. 31 EmulateApj Pages with 13 embedded postscript figure

    Transparent Anomalous Dispersion and Superluminal Light Pulse Propagation at a Negative Group Velocity

    Full text link
    Anomalous dispersion cannot occur in a transparent passive medium where electromagnetic radiation is being absorbed at all frequencies, as pointed out by Landau and Lifshitz. Here we show, both theoretically and experimentally, that transparent linear anomalous dispersion can occur when a gain doublet is present. Therefore, a superluminal light pulse propagation can be observed even at a negative group velocity through a transparent medium with almost no pulse distortion. Consequently, a {\it negative transit time} is experimentally observed resulting in the peak of the incident light pulse to exit the medium even before entering it. This counterintuitive effect is a direct result of the {\it rephasing} process owing to the wave nature of light and is not at odds with either causality or Einstein's theory of special relativity.Comment: 12 journal pages, 9 figure

    Bilateral symmetry breaking in a nonlinear Fabry-Perot cavity exhibiting optical tristability

    Full text link
    We show the existence of a region in the parameter space that defines the field dynamics in a Fabry-Perot cylindrical cavity, where three output stable stationary states of the light are possible for a given localized incident field. Two of these states do not preserve the bilateral (i.e. left-right) symmetry of the entire system. These broken-symmetry states are the high-transmission nonlinear modes of the system. We also discuss how to excite these states.Comment: 5 pages, 5 figure
    • …
    corecore