2,795 research outputs found

    Higgs Mass in the Standard Model from Coupling Constant Reduction

    Get PDF
    Plausible interrelations between parameters of the standard model are studied. The empirical value of the top quark mass, when used in the renormalization group equations, suggests that the ratio of the colour SU(3) gauge coupling g3g_3, and the top coupling gtg_t is independent of the renormalization scale. On the other hand, variety of top-condensate models suggest that the Higgs self-coupling λ\lambda is proportional to gt2g_t^2. Invoking the requirement that the ratio λ(t)/gt2(t)\lambda(t)/g_t^2(t) is independent of the renormalization scale tt, fixes the Higgs mass. The pole mass of the Higgs [which differs from the renormalization group mass by a few percent] is found to be ∼154\sim 154 GeV for the one-loop equations and ∼148\sim 148 GeV for the two-loop equations.Comment: 17 pages RevTeX including 7 figure

    Chiral Lagrangian Parameters for Scalar and Pseudoscalar Mesons

    Full text link
    The results of a high-statistics study of scalar and pseudoscalar meson propagators in quenched lattice QCD are presented. For two values of lattice spacing, β=5.7\beta=5.7 (a≈.18a \approx .18 fm) and 5.9 (a≈.12a \approx .12 fm), we probe the light quark mass region using clover improved Wilson fermions with the MQA pole-shifting ansatz to treat the exceptional configuration problem. The quenched chiral loop parameters m0m_0 and αΦ\alpha_{\Phi} are determined from a study of the pseudoscalar hairpin correlator. From a global fit to the meson correlators, estimates are obtained for the relevant chiral Lagrangian parameters, including the Leutwyler parameters L5L_5 and L8L_8. Using the parameters obtained from the singlet and nonsinglet pseudoscalar correlators, the quenched chiral loop effect in the nonsinglet scalar meson correlator is studied. By removing this QCL effect from the lattice correlator, we obtain the mass and decay constant of the ground state scalar, isovector meson a0a_0.Comment: 36 pages, 12 figures, LaTe

    Quenched divergences in the deconfined phase of SU(2) gauge theory

    Get PDF
    The spectrum of the overlap Dirac operator in the deconfined phase of quenched gauge theory is known to have three parts: exact zeros arising from topology, small nonzero eigenvalues that result in a non-zero chiral condensate, and the dense bulk of the spectrum, which is separated from the small eigenvalues by a gap. In this paper, we focus on the small nonzero eigenvalues in an SU(2) gauge field background at β=2.4\beta=2.4 and NT=4N_T=4. This low-lying spectrum is computed on four different spatial lattices (12312^3, 14314^3, 16316^3, and 18318^3). As the volume increases, the small eigenvalues become increasingly concentrated near zero in such a way as to strongly suggest that the infinite volume condensate diverges.Comment: 12 pages, 3 figures, version to appear in Physical Review

    Quenched Chiral Artifacts for Wilson-Dirac Fermions

    Get PDF
    We examine artifacts associated with the chiral symmetry breaking induced through the use of Wilson-Dirac fermions in lattice Monte Carlo computations. For light quark masses, the conventional quenched theory can not be defined using direct Monte Carlo methods due to the existence of nonintegrable poles in physical quantities. These poles are associated with the real eigenvalue spectrum of the Wilson-Dirac operator. We show how this singularity structure can be observed in the analysis of both QED in two dimensions and QCD in four dimensions.Comment: 32 pages (Latex) including 13 figures (EPS

    Neutrino masses and mixings

    Get PDF
    We propose a novel theoretical understanding of neutrino masses and mixings, which is attributed to the intrinsic vector-like feature of the regularized Standard Model at short distances. We try to explain the smallness of Dirac neutrino masses and the decoupling of the right-handed neutrino as a free particle. Neutrino masses and mixing angles are completely related to each other in the Schwinger-Dyson equations for their self-energy functions. The solutions to these equations and a possible pattern of masses and mixings are discussed.Comment: LaTex 11 page

    A relativistic calculation of super-Hubble suppression of inflation with thermal dissipation

    Full text link
    We investigated the evolution of the primordial density perturbations produced by inflation with thermal dissipation. A full relativistic analysis on the evolution of initial perturbations from the warm inflation era to a radiation-dominated universe has been developed. The emphasis is on tracking the ratio between the adiabatic and the isocurvature mode of the initial perturbations. This result is employed to calculate a testable factor: the super-Hubble suppression of the power spectrum of the primordial perturbations. We show that based on the warm inflation scenario, the super-Hubble suppression factor, ss, for an inflation with thermal dissipation is at least 0.5. This prediction does not depend on the details of the model parameters. If ss is larger than 0.5, it implies that the friction parameter Γ\Gamma is larger than the Hubble expansion parameter HH during the inflation era.Comment: 22 pages, 3 figures, use RevTex, accepted by Class. Quant. Gra

    Quantum properties of general gauge theories with composite and external fields

    Get PDF
    The generating functionals of Green's functions with composite and external fields are considered in the framework of BV and BLT quantization methods for general gauge theories. The corresponding Ward identities are derived and the gauge dependence is investigatedComment: 24 pages, LATEX, slightly changed to clarify the essential new aspect concerning composite fields depending on external ones; added formulas showing lack of (generalized) nilpotence of operators appearing in the Ward identitie

    1/N_c Corrections to the Hadronic Matrix Elements of Q_6 and Q_8 in K --> pi pi Decays

    Full text link
    We calculate long-distance contributions to the amplitudes A(K^0 --> pi pi, I) induced by the gluon and the electroweak penguin operators Q_6 and Q_8, respectively. We use the 1/N_c expansion within the effective chiral lagrangian for pseudoscalar mesons. In addition, we adopt a modified prescription for the identification of meson momenta in the chiral loop corrections in order to achieve a consistent matching to the short-distance part. Our approach leads to an explicit classification of the loop diagrams into non-factorizable and factorizable, the scale dependence of the latter being absorbed in the low-energy coefficients of the effective theory. Along these lines we calculate the one-loop corrections to the O(p^0) term in the chiral expansion of both operators. In the numerical results, we obtain moderate corrections to B_6^(1/2) and a substantial reduction of B_8^(3/2).Comment: 32 pages, LaTeX, 8 eps figures. One reference added, to appear in Phys. Rev.

    Anomalous Chiral Behavior in Quenched Lattice QCD

    Full text link
    A study of the chiral behavior of pseudoscalar masses and decay constants is carried out in quenched lattice QCD with Wilson fermions. Using the modified quenched approximation (MQA) to cure the exceptional configuration problem, accurate results are obtained for pion masses as low as ≈\approx 200 MeV. The anomalous chiral log effect associated with quenched η′\eta' loops is studied in both the relation between mπ2m_{\pi}^2 vs. mqm_q and in the light-mass behavior of the pseudoscalar and axial vector matrix elements. The size of these effects agrees quantitatively with a direct measurement of the η′\eta' hairpin graph, as well as with a measurement of the topological susceptibility, thus providing several independent and quantitatively consistent determinations of the quenched chiral log parameter δ\delta. For β=5.7\beta=5.7 with clover-improved fermions (Csw=1.57)(C_{sw} =1.57) all results are consistent with δ=0.065±0.013\delta=0.065\pm 0.013 .Comment: 51 pages, 20 figures, Late
    • …
    corecore