3 research outputs found

    A photometric and spectroscopic study of NSVS 14256825: the second sdOB+dM eclipsing binary

    Full text link
    We present an analysis of UBVRC_{\rm C}IC_{\rm C}JH photometry and phase-resolved optical spectroscopy of NSVS 14256825, an HW Vir type binary. The members of this class consist of a hot subdwarf and a main-sequence low-mass star in a close orbit (Porb 0.1P_{\rm orb} ~ 0.1 d). Using the primary-eclipse timings, we refine the ephemeris for the system, which has an orbital period of 0.11037 d. From the spectroscopic data analysis, we derive the effective temperature, T1=40000±500T_1 = 40000 \pm 500 K, the surface gravity, logg1=5.50±0.05\log g_1 = 5.50\pm0.05, and the helium abundance, n(He)/n(H)=0.003±0.001n(\rm He)/n(\rm H)=0.003\pm0.001, for the hot component. Simultaneously modelling the photometric and spectroscopic data using the Wilson-Devinney code, we obtain the geometrical and physical parameters of NSVS 14256825. Using the fitted orbital inclination and mass ratio (i = 82\fdg5\pm0\fdg3 and q=M2/M1=0.260±0.012q = M_2/M_1 = 0.260\pm0.012, respectively), the components of the system have M1=0.419±0.070MM_1 = 0.419 \pm 0.070 M_{\odot}, R1=0.188±0.010RR_1 = 0.188 \pm 0.010 R_{\odot}, M2=0.109±0.023MM_2 = 0.109 \pm 0.023 M_{\odot}, and R2=0.162±0.008RR_2 = 0.162 \pm 0.008 R_{\odot}. From its spectral characteristics, the hot star is classified as an sdOB star.Comment: 8 pages, 7 figures, accepted for publication in MNRA

    Optical Detection of a Single Nuclear Spin

    Full text link
    We propose a method to optically detect the spin state of a 31-P nucleus embedded in a 28-Si matrix. The nuclear-electron hyperfine splitting of the 31-P neutral-donor ground state can be resolved via a direct frequency discrimination measurement of the 31-P bound exciton photoluminescence using single photon detectors. The measurement time is expected to be shorter than the lifetime of the nuclear spin at 4 K and 10 T.Comment: 4 pages, 3 figure
    corecore