9 research outputs found

    Ordering and finite-size effects in the dynamics of one-dimensional transient patterns

    Full text link
    We introduce and analyze a general one-dimensional model for the description of transient patterns which occur in the evolution between two spatially homogeneous states. This phenomenon occurs, for example, during the Freedericksz transition in nematic liquid crystals.The dynamics leads to the emergence of finite domains which are locally periodic and independent of each other. This picture is substantiated by a finite-size scaling law for the structure factor. The mechanism of evolution towards the final homogeneous state is by local roll destruction and associated reduction of local wavenumber. The scaling law breaks down for systems of size comparable to the size of the locally periodic domains. For systems of this size or smaller, an apparent nonlinear selection of a global wavelength holds, giving rise to long lived periodic configurations which do not occur for large systems. We also make explicit the unsuitability of a description of transient pattern dynamics in terms of a few Fourier mode amplitudes, even for small systems with a few linearly unstable modes.Comment: 18 pages (REVTEX) + 10 postscript figures appende

    Numerical study of pattern formation following a convective instability in non-Boussinesq fluids

    Full text link
    We present a numerical study of a model of pattern formation following a convective instability in a non-Boussinesq fluid. It is shown that many of the features observed in convection experiments conducted on CO2CO_{2} gas can be reproduced by using a generalized two-dimensional Swift-Hohenberg equation. The formation of hexagonal patterns, rolls and spirals is studied, as well as the transitions and competition among them. We also study nucleation and growth of hexagonal patterns and find that the front velocity in this two dimensional model is consistent with the prediction of marginal stability theory for one dimensional fronts.Comment: 9 pages, report FSU-SCRI-92-6

    Kinetics of island growth for a model of H/Fe

    No full text

    Coarsening of solid-liquid mixtures in a random acceleration field

    Get PDF
    The effects of flow induced by a random acceleration field (g-jitter) are considered in two related situations that are of interest for microgravity fluid experiments: the random motion of isolated buoyant particles, and diffusion driven coarsening of a solid-liquid mixture. We start by analyzing in detail actual accelerometer data gathered during a recent microgravity mission, and obtain the values of the parameters defining a previously introduced stochastic model of this acceleration field. The diffusive motion of a single solid particle suspended in an incompressible fluid that is subjected to such random accelerations is considered, and mean squared velocities and effective diffusion coefficients are explicitly given. We next study the flow induced by an ensemble of such particles, and show the existence of a hydrodynamically induced attraction between pairs of particles at distances large compared with their radii, and repulsion at short distances. Finally, a mean field analysis is used to estimate the effect of g-jitter on diffusion controlled coarsening of a solid-liquid mixture. Corrections to classical coarsening rates due to the induced fluid motion are calculated, and estimates are given for coarsening of Sn-rich particles in a Sn-Pb eutectic fluid, an experiment to be conducted in microgravity in the near future

    Surgical treatment of the inflammatory diseases of the paranasal sinuses indication, surgical technique, risks, mismanagement and complications, revision surgery

    No full text
    corecore