1,160 research outputs found
Probabilistic Quantum Encoder for Single-Photon Qubits
We describe an experiment in which a physical qubit represented by the
polarization state of a single-photon was probabilistically encoded in the
logical state of two photons. The experiment relied on linear optics,
post-selection, and three-photon interference effects produced by a parametric
down-conversion photon pair and a weak coherent state. An interesting
consequence of the encoding operation was the ability to observe entangled
three-photon Greenberger-Horne-Zeilinger states.Comment: 4 pages, 4 figures; submitted to Phys. Rev.
Validation of the Harvard Lyman-α in situ water vapor instrument: Implications for the mechanisms that control stratospheric water vapor
Building on previously published details of the laboratory calibrations of the Harvard Lyman-α photofragment fluorescence hygrometer (HWV) on the NASA ER-2 and WB-57 aircraft, we describe here the validation process for HWV, which includes laboratory calibrations and intercomparisons with other Harvard water vapor instruments at water vapor mixing ratios from 0 to 10 ppmv, followed by in-flight intercomparisons with the same Harvard hygrometers. The observed agreement exhibited in the laboratory and during intercomparisons helps corroborate the accuracy of HWV. In light of the validated accuracy of HWV, we present and evaluate a series of intercomparisons with satellite and balloon borne water vapor instruments made from the upper troposphere to the lower stratosphere in the tropics and midlatitudes. Whether on the NASA ER-2 or WB-57 aircraft, HWV has consistently measured about 1–1.5 ppmv higher than the balloon-borne NOAA/ESRL/GMD frost point hygrometer (CMDL), the NOAA Cryogenic Frost point Hygrometer (CFH), and the Microwave Limb Sounder (MLS) on the Aura satellite in regions of the atmosphere where water vapor is <10 ppmv. Comparisons in the tropics with the Halogen Occultation Experiment (HALOE) on the Upper Atmosphere Research Satellite show large variable differences near the tropopause that converge to ~10% above 460 K, with HWV higher. Results we show from the Aqua Validation and Intercomparison Experiment (AquaVIT) at the AIDA chamber in Karlsruhe do not reflect the observed in-flight differences. We illustrate that the interpretation of the results of comparisons between modeled and measured representations of the seasonal cycle of water entering the lower tropical stratosphere is dictated by which data set is used
Quantum interference by two temporally distinguishable pulses
We report a two-photon interference effect, in which the entangled photon
pairs are generated from two laser pulses well-separated in time. In a single
pump pulse case, interference effects did not occur in our experimental scheme.
However, by introducing a second pump pulse delayed in time, quantum
interference was then observed. The visibility of the interference fringes
shows dependence on the delay time between two laser pulses. The results are
explained in terms of indistinguishability of biphoton amplitudes which
originated from two temporally separated laser pulses.Comment: two-column, 4pages, submitted to PRA, minor change
Two-photon imaging and quantum holography
It has been claimed that ``the use of entangled photons in an imaging system
can exhibit effects that cannot be mimicked by any other two-photon source,
whatever strength of the correlations between the two photons'' [A. F.
Abouraddy, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, Phys. Rev. Lett.
87, 123602 (2001)]. While we believe that the cited statement is true, we show
that the method proposed in that paper, with ``bucket detection'' of one of the
photons, will give identical results for entangled states as for appropriately
prepared classically correlated states.Comment: 4 pages, 2 figures, REVTe
Experimental Demonstration of Five-photon Entanglement and Open-destination Teleportation
Universal quantum error-correction requires the ability of manipulating
entanglement of five or more particles. Although entanglement of three or four
particles has been experimentally demonstrated and used to obtain the extreme
contradiction between quantum mechanics and local realism, the realization of
five-particle entanglement remains an experimental challenge. Meanwhile, a
crucial experimental challenge in multi-party quantum communication and
computation is the so-called open-destination teleportation. During
open-destination teleportation, an unknown quantum state of a single particle
is first teleported onto a N-particle coherent superposition to perform
distributed quantum information processing. At a later stage this teleported
state can be readout at any of the N particles for further applications by
performing a projection measurement on the remaining N-1 particles. Here, we
report a proof-of-principle demonstration of five-photon entanglement and
open-destination teleportation. In the experiment, we use two entangled photon
pairs to generate a four-photon entangled state, which is then combined with a
single photon state to achieve the experimental goals. The methods developed in
our experiment would have various applications e.g. in quantum secret sharing
and measurement-based quantum computation.Comment: 19 pages, 4 figures, submitted for publication on 15 October, 200
Generating Entangled Two-Photon States with Coincident Frequencies
It is shown that parametric downconversion, with a short-duration pump pulse
and a long nonlinear crystal that is appropriately phase matched, can produce a
frequency-entangled biphoton state whose individual photons are coincident in
frequency. Quantum interference experiments which distinguish this state from
the familiar time-coincident biphoton state are described.Comment: Revised version (a typo was corrected) as published on PR
Role of entanglement in two-photon imaging
The use of entangled photons in an imaging system can exhibit effects that
cannot be mimicked by any other two-photon source, whatever the strength of the
correlations between the two photons. We consider a two-photon imaging system
in which one photon is used to probe a remote (transmissive or scattering)
object, while the other serves as a reference. We discuss the role of
entanglement versus correlation in such a setting, and demonstrate that
entanglement is a prerequisite for achieving distributed quantum imaging.Comment: 15 pages, 2 figure
On EPR paradox, Bell's inequalities and experiments which prove nothing
This article shows that the there is no paradox. Violation of Bell's
inequalities should not be identified with a proof of non locality in quantum
mechanics. A number of past experiments is reviewed, and it is concluded that
the experimental results should be re-evaluated. The results of the experiments
with atomic cascade are shown not to contradict the local realism. The article
points out flaws in the experiments with down-converted photons. The
experiments with neutron interferometer on measuring the "contextuality" and
Bell-like inequalities are analyzed, and it is shown that the experimental
results can be explained without such notions. Alternative experiment is
proposed to prove the validity of local realism.Comment: 27 pages, 8 figures. I edited a little the text and abstract I
corrected equations (49) and (50
Validation and Determination of Ice Water Content - Radar Reflectivity Relationships during CRYSTAL-FACE: Flight Requirements for Future Comparisons
In order for clouds to be more accurately represented in global circulation models (GCM), there is need for improved understanding of the properties of ice such as the total water in ice clouds, called ice water content (IWC), ice particle sizes and their shapes. Improved representation of clouds in models will enable GCMs to better predict for example, how changes in emissions of pollutants affect cloud formation and evolution, upper tropospheric water vapor, and the radiative budget of the atmosphere that is crucial for climate change studies. An extensive cloud measurement campaign called CRYSTAL-FACE was conducted during Summer 2002 using instrumented aircraft and a variety of instruments to measure properties of ice clouds. This paper deals with the measurement of IWC using the Harvard water vapor and total water instruments on the NASA WB-57 high-altitude aircraft. The IWC is measured directly by these instruments at the altitude of the WB-57, and it is compared with remote measurements from the Goddard Cloud Radar System (CRS) on the NASA ER-2. CRS measures vertical profiles of radar reflectivity from which IWC can be estimated at the WB-57 altitude. The IWC measurements obtained from the Harvard instruments and CRS were found to be within 20-30% of each other. Part of this difference was attributed to errors associated with comparing two measurements that are not collocated in time an space since both aircraft were not in identical locations. This study provides some credibility to the Harvard and CRS-derived IWC measurements that are in general difficult to validate except through consistency checks using different measurement approaches
- …