574 research outputs found

    Strong-coupling branching of FQHL edges

    Full text link
    We have developed a theory of quasiparticle backscattering in a system of point contacts formed between single-mode edges of several Fractional Quantum Hall Liquids (FQHLs) with in general different filling factors νj\nu_j and one common single-mode edge ν0\nu_0 of another FQHL. In the strong-tunneling limit, the model of quasiparticle backscattering is obtained by the duality transformation of the electron tunneling model. The new physics introduced by the multi-point-contact geometry of the system is coherent splitting of backscattered quasiparticles at the point contacts in the course of propagation along the common edge ν0\nu_0. The ``branching ratios'' characterizing the splitting determine the charge and exchange statistics of the edge quasiparticles that can be different from those of Laughlin's quasiparticles in the bulk of FQHLs. Accounting for the edge statistics is essential for the system of more than one point contact and requires the proper description of the flux attachement to tunneling electrons.Comment: 12 pages, 2 figure

    Sensitivity and Linearity of Superconducting Radio-Frequency Single-Electron Transistors: Effects of Quantum Charge Fluctuations

    Full text link
    We have investigated the effects of quantum fluctuations of quasiparticles on the operation of superconducting radio-frequency single-electron transistors (RF-SETs) for large values of the quasiparticle cotunneling parameter α=8EJ/Ec\alpha=8E_{J}/E_{c}, where EJE_{J} and EcE_{c} are the Josephson and charging energies. We find that for α>1\alpha>1, subgap RF-SET operation is still feasible despite quantum fluctuations that renormalize the SET charging energy and wash out quasiparticle tunneling thresholds. Surprisingly, such RF-SETs show linearity and signal-to-noise ratio superior to those obtained when quantum fluctuations are weak, while still demonstrating excellent charge sensitivity.Comment: Submitted to Phys. Rev. Let

    Coulomb blockade in superconducting quantum point contacts

    Full text link
    Amplitude of the Coulomb blockade oscillations is calculated for a single-mode Josephson junction with arbitrary electron transparency DD. It is shown that the Coulomb blockade is suppressed in ballistic junctions with D1D\to 1. The suppression is described quantitatively as the Landau-Zener transition in imaginary time.Comment: 5 pages, 3 figures include

    Nonequilibrium and Parity Effects in the Tunneling Conductance of Ultrasmall Superconducting Grains

    Full text link
    Recent experiment on the tunneling spectra of ultrasmall superconducting grains revealed an unusual structure of the lowest differential conductance peak for grains in the odd charging states. We explain this behavior by nonequilibrium ``gapless'' excitations associated with different energy levels occupied by the unpaired electron. These excitations are generated by inelastic cotunneling.Comment: 4 pages, 2 .eps figures include

    Resonant tunneling through a macroscopic charge state in a superconducting SET transistor

    Full text link
    We predict theoretically and observe in experiment that the differential conductance of a superconducting SET transistor exhibits a peak which is a complete analogue in a macroscopic system of a standard resonant tunneling peak associated with tunneling through a single quantum state. In particular, in a symmetric transistor, the peak height is universal and equal to e2/2πe^2/2\pi \hbar. Away from the resonance we clearly observe the co-tunneling current which in contrast to the normal-metal transistor varies linearly with the bias voltage.Comment: 11 pages, 3 figures, Fig. 1 available upon request from the first autho

    Resistively-shunted superconducting quantum point contacts

    Full text link
    We have studied the Josephson dynamics of resistively-shunted ballistic superconducting quantum point contacts at finite temperatures and arbitrary number of conducting modes. Compared to the classical Josephson dynamics of tunnel junctions, dynamics of quantum point contacts exhibits several new features associated with temporal fluctuations of the Josephson potential caused by fluctuations in the occupation of the current-carrying Andreev levels.Comment: 5 pages, RevTex, 3 postscript figures include

    Transport in the Laughlin quasiparticle interferometer: Evidence for topological protection in an anyonic qubit

    Full text link
    We report experiments on temperature and Hall voltage bias dependence of the superperiodic conductance oscillations in the novel Laughlin quasiparticle interferometer, where quasiparticles of the 1/3 fractional quantum Hall fluid execute a closed path around an island of the 2/5 fluid. The amplitude of the oscillations fits well the quantum-coherent thermal dephasing dependence predicted for a two point-contact chiral edge channel interferometer in the full experimental temperature range 10.2<T<141 mK. The temperature dependence observed in the interferometer is clearly distinct from the behavior in single-particle resonant tunneling and Coulomb blockade devices. The 5h/e flux superperiod, originating in the anyonic statistical interaction of Laughlin quasiparticles, persists to a relatively high T~140 mK. This temperature is only an order of magnitude less than the 2/5 quantum Hall gap. Such protection of quantum logic by the topological order of fractional quantum Hall fluids is expected to facilitate fault-tolerant quantum computation with anyons.Comment: 13 pages, 10 figure

    Statistics of the dissipated energy in driven single-electron transitions

    Full text link
    We analyze the distribution of heat generated in driven single-electron transitions and discuss the related non-equilibrium work theorems. In the adiabatic limit, the heat distribution is shown to become Gaussian, with the heat noise that, in spite of thermal fluctuations, vanishes together with the average dissipated energy. We show that the transitions satisfy Jarzynski equality for arbitrary drive and calculate the probability of the negative heat values. We also derive a general condition on the heat distribution that generalizes the Bochkov-Kuzovlev equality and connects it to the Jarzynski equality.Comment: 5 pages, 2 figure

    Thermal budget of superconducting digital circuits at sub-kelvin temperatures

    Get PDF
    Superconducting single-flux-quantum (SFQ) circuits have so far been developed and optimized for operation at or above helium temperatures. The SFQ approach, however, should also provide potentially viable and scalable control and read-out circuits for Josephson-junction qubits and other applications with much lower, milli-kelvin, operating temperatures. This paper analyzes the overheating problem which becomes important in this new temperature range. We suggest a thermal model of the SFQ circuits at sub-kelvin temperatures and present experimental results on overheating of electrons and silicon substrate which support this model. The model establishes quantitative limitations on the dissipated power both for "local" electron overheating in resistors and "global" overheating due to ballistic phonon propagation along the substrate. Possible changes in the thermal design of SFQ circuits in view of the overheating problem are also discussed.Comment: 10 pages, 8 figures, submitted to J. Appl. Phy
    corecore