33 research outputs found

    Trading in cooperativity for specificity to maintain uracil-free DNA

    Get PDF
    Members of the dUTPase superfamily play an important role in the maintenance of the pyrimidine nucleotide balance and of genome integrity. dCTP deaminases and the bifunctional dCTP deaminase-dUTPases are cooperatively regulated by dTTP. However, the manifestation of allosteric behavior within the same trimeric protein architecture of dUTPases, the third member of the superfamily, has been a question of debate for decades. Therefore, we designed hybrid dUTPase trimers to access conformational states potentially mimicking the ones observed in the cooperative relatives. We studied how the interruption of different steps of the enzyme cycle affects the active site cross talk. We found that subunits work independently in dUTPase. The experimental results combined with a comparative structural analysis of dUTPase superfamily enzymes revealed that subtile structural differences within the allosteric loop and the central channel in these enzymes give rise to their dramatically different cooperative behavior. We demonstrate that the lack of allosteric regulation in dUTPase is related to the functional adaptation to more efficient dUTP hydrolysis which is advantageous in uracil-DNA prevention

    dUTPase based switch controls transfer of virulence genes in order to preserve integrity of the transferred mobile genetic elements

    Get PDF
    dUTPases ubiquitously regulate cellular dUTP levels to preserve genome integrity. Recently, several other cellular processes were reported to be controlled by dUTPases including the horizontal transfer of Staphylococcus aureus pathogenicity islands (SaPI). SaPIs are mobil genetic elements that encode virulence enhancing factors e.g. toxins. Here, phage dUTPases were proposed to counteract the repressor protein (Stl) and promote SaPI excision and transfer. A G protein-like mechanism was proposed which is unexpected in light of the kinetic mechanism of dUTPase. Here we investigate the molecular mechanism of SaPI transfer regulation, using numerous dUTPase variants and a wide range of in vitro methods (steady-state and transient kinetics, VIS and fluorescence spectroscopy, EMSA, quartz crystal microbalance, X-ray crystallography). Our results unambiguously show that Stl inhibits the enzymatic activity of dUTPase in the nM concentration range and dUTP strongly inhibits the dUTPase: Stl complexation. These results identify Stl as a highly potent dUTPase inhibitor protein and disprove the G protein-like mechanism. Importantly, our results clearly show that the dUTPase:dUTP complex is inaccessible to the Stl repressor. Unlike in small GTPases, hydrolysis of the substrate nucleoside triphosphate (dUTP in this case) is required prior to the interaction with the partner (Stl repressor in this case). We propose that dUTPase can efficiently interact with Stl and induce SaPI excision only if the cellular dUTP level is low (i.e. when dUTPase resides mainly in the apo enzyme form) while high dUTP levels would inhibit SaPI transfer. This mechanism may serve the preservation of the integrity of the transferred SaPI genes and links the well-known metabolic role of dUTPases to their newly revealed regulatory function in spread of virulence factors

    HDX and Native Mass Spectrometry Reveals the Different Structural Basis for Interaction of the Staphylococcal Pathogenicity Island Repressor Stl with Dimeric and Trimeric Phage dUTPases

    Get PDF
    The dUTPase enzyme family plays an essential role in maintaining the genome integrity and are represented by two distinct classes of proteins; the β-pleated homotrimeric and the all-α homodimeric dUTPases. Representatives of both trimeric and dimeric dUTPases are encoded by Staphylococcus aureus phage genomes and have been shown to interact with the Stl repressor protein of S. aureus pathogenicity island SaPIbov1. In the present work we set out to characterize the interactions between these proteins based on a range of biochemical and biophysical methods and shed light on the binding mechanism of the dimeric φNM1 phage dUTPase and Stl. Using hydrogen deuterium exchange mass spectrometry, we also characterize the protein regions involved in the dUTPase:Stl interactions. Based on these results we provide reasonable explanation for the enzyme inhibitory effect of Stl observed in both types of complexes. Our experiments reveal that Stl employs different peptide segments and stoichiometry for the two different phage dUTPases which allows us to propose a functional plasticity of Stl. The malleable character of Stl serves as a basis for the inhibition of both dimeric and trimeric dUTPases

    New semisynthetic vinca alkaloids: chemical, biochemical and cellular studies

    Get PDF
    A new semisynthetic anti-tumour bis-indol compound, KAR-2 [3′-(β-chloroethyl)-2′,4′-dioxo-3,5′-spiro-oxazolidino-4-deacetoxy-vinblastine] with lower toxicity than vinca alkaloids used in chemotherapy binds to calmodulin but, in contrast to vinblastine, does not exhibit anti-calmodulin activity. To investigate whether the modest chemical modification of bis-indol structure is responsible for the lack of anti-calmodulin potency and for the different pharmacological effects, new derivatives have been synthesized for comparative studies. The synthesis of the KAR derivatives are presented. The comparative studies showed that the spiro-oxazolidino ring and the substitution of a formyl group to a methyl one were responsible for the lack of anti-calmodulin activities. The new derivatives, similar to the mother compounds, inhibited the tubulin assembly in polymerization tests in vitro, however their inhibitory effect was highly dependent on the organization state of microtubules; bundled microtubules appeared to be resistant against the drugs. The maximal cytotoxic activities of KAR derivatives in in vivo mice hosting leukaemia P388 or Ehrlich ascites tumour cells appeared similar to that of vinblastine or vincristine, however significant prolongation of life span could be reached with KAR derivatives only after the administration of a single dose. These studies plus data obtained using a cultured human neuroblastoma cell line showed that KAR compounds displayed their cytotoxic activities at significantly higher concentrations than the mother compounds, although their antimicrotubular activities were similar in vitro. These data suggest that vinblastine/vincristine damage additional crucial cell functions, one of which could be related to calmodulin-mediated processes. © 1999 Cancer Research Campaig

    Calpain-Catalyzed Proteolysis of Human dUTPase Specifically Removes the Nuclear Localization Signal Peptide

    Get PDF
    Calpain proteases drive intracellular signal transduction via specific proteolysis of multiple substrates upon Ca(2+)-induced activation. Recently, dUTPase, an enzyme essential to maintain genomic integrity, was identified as a physiological calpain substrate in Drosophila cells. Here we investigate the potential structural/functional significance of calpain-activated proteolysis of human dUTPase.Limited proteolysis of human dUTPase by mammalian m-calpain was investigated in the presence and absence of cognate ligands of either calpain or dUTPase. Significant proteolysis was observed only in the presence of Ca(II) ions, inducing calpain action. The presence or absence of the dUTP-analogue α,β-imido-dUTP did not show any effect on Ca(2+)-calpain-induced cleavage of human dUTPase. The catalytic rate constant of dUTPase was unaffected by calpain cleavage. Gel electrophoretic analysis showed that Ca(2+)-calpain-induced cleavage of human dUTPase resulted in several distinctly observable dUTPase fragments. Mass spectrometric identification of the calpain-cleaved fragments identified three calpain cleavage sites (between residues (4)SE(5); (7)TP(8); and (31)LS(32)). The cleavage between the (31)LS(32) peptide bond specifically removes the flexible N-terminal nuclear localization signal, indispensable for cognate localization.Results argue for a mechanism where Ca(2+)-calpain may regulate nuclear availability and degradation of dUTPase

    Transcriptomic profiling of host-parasite interactions in the microsporidian <i>Trachipleistophora hominis</i>

    Get PDF
    BACKGROUND: Trachipleistophora hominis was isolated from an HIV/AIDS patient and is a member of a highly successful group of obligate intracellular parasites. METHODS: Here we have investigated the evolution of the parasite and the interplay between host and parasite gene expression using transcriptomics of T. hominis-infected rabbit kidney cells. RESULTS: T. hominis has about 30 % more genes than small-genome microsporidians. Highly expressed genes include those involved in growth, replication, defence against oxidative stress, and a large fraction of uncharacterised genes. Chaperones are also highly expressed and may buffer the deleterious effects of the large number of non-synonymous mutations observed in essential T. hominis genes. Host expression suggests a general cellular shutdown upon infection, but ATP, amino sugar and nucleotide sugar production appear enhanced, potentially providing the parasite with substrates it cannot make itself. Expression divergence of duplicated genes, including transporters used to acquire host metabolites, demonstrates ongoing functional diversification during microsporidian evolution. We identified overlapping transcription at more than 100 loci in the sparse T. hominis genome, demonstrating that this feature is not caused by genome compaction. The detection of additional transposons of insect origin strongly suggests that the natural host for T. hominis is an insect. CONCLUSIONS: Our results reveal that the evolution of contemporary microsporidian genomes is highly dynamic and innovative. Moreover, highly expressed T. hominis genes of unknown function include a cohort that are shared among all microsporidians, indicating that some strongly conserved features of the biology of these enormously successful parasites remain uncharacterised. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-015-1989-z) contains supplementary material, which is available to authorized users

    Proteins with Complex Architecture as Potential Targets for Drug Design: A Case Study of Mycobacterium tuberculosis

    Get PDF
    Lengthy co-evolution of Homo sapiens and Mycobacterium tuberculosis, the main causative agent of tuberculosis, resulted in a dramatically successful pathogen species that presents considerable challenge for modern medicine. The continuous and ever increasing appearance of multi-drug resistant mycobacteria necessitates the identification of novel drug targets and drugs with new mechanisms of action. However, further insights are needed to establish automated protocols for target selection based on the available complete genome sequences. In the present study, we perform complete proteome level comparisons between M. tuberculosis, mycobacteria, other prokaryotes and available eukaryotes based on protein domains, local sequence similarities and protein disorder. We show that the enrichment of certain domains in the genome can indicate an important function specific to M. tuberculosis. We identified two families, termed pkn and PE/PPE that stand out in this respect. The common property of these two protein families is a complex domain organization that combines species-specific regions, commonly occurring domains and disordered segments. Besides highlighting promising novel drug target candidates in M. tuberculosis, the presented analysis can also be viewed as a general protocol to identify proteins involved in species-specific functions in a given organism. We conclude that target selection protocols should be extended to include proteins with complex domain architectures instead of focusing on sequentially unique and essential proteins only
    corecore