1,846 research outputs found
Correlation functions, Bell's inequalities and the fundamental conservation laws
I derive the correlation function for a general theory of two-valued spin
variables that satisfy the fundamental conservation law of angular momentum.
The unique theory-independent correlation function is identical to the quantum
mechanical correlation function. I prove that any theory of correlations of
such discrete variables satisfying the fundamental conservation law of angular
momentum violates the Bell's inequalities. Taken together with the Bell's
theorem, this result has far reaching implications. No theory satisfying
Einstein locality, reality in the EPR-Bell sense, and the validity of the
conservation law can be constructed. Therefore, all local hidden variable
theories are incompatible with fundamental symmetries and conservation laws.
Bell's inequalities can be obeyed only by violating a conservation law. The
implications for experiments on Bell's inequalities are obvious. The result
provides new insight regarding entanglement, and its measures.Comment: LaTeX, 12pt, 11 pages, 2 figure
Initial wave packets and the various power-law decreases of scattered wave packets at long times
The long time behavior of scattered wave packets from a
finite-range potential is investigated, by assuming to be
initially located outside the potential. It is then shown that can
asymptotically decrease in the various power laws at long time, according to
its initial characteristics at small momentum. As an application, we consider
the square-barrier potential system and demonstrate that exhibits
the asymptotic behavior , while another behavior like can
also appear for another .Comment: 5 pages, 1 figur
Anonymity for practical quantum networks
Quantum communication networks have the potential to revolutionise
information and communication technologies. Here we are interested in a
fundamental property and formidable challenge for any communication network,
that of guaranteeing the anonymity of a sender and a receiver when a message is
transmitted through the network, even in the presence of malicious parties. We
provide the first practical protocol for anonymous communication in realistic
quantum networks.Comment: 5 pages, published versio
Cosmic acceleration in a model of scalar-tensor gravitation
In this paper we consider a model of scalar-tensor theory of gravitation in
which the scalar field, determines the gravitational coupling G and has
a Lagrangian of the form, . We study the cosmological consequence
of this theory in the matter dominated era and show that this leads to a
transition from an initial decelerated expansion to an accelerated expansion
phase at the present epoch. Using observational constraints, we see that the
effective equation of state today for the scalar field turns out to be
, with and that the transition
to an accelerated phase happened at a redshift of about 0.3.Comment: 12 pages, 2 figures, matches published versio
Finding Common Interests: Using Social Media to boost Retention in Voluntary Professional Associations
Attrition is one of the most important challenges faced by Professional Associations like the Project Management Institute (PMI). According to publicly available data, 90,000 members joined PMI in 2005. In the month of April 2006 alone, 33,751 new members were added, which leads to the logical conclusion that the PMI membership must have grown by over 115,750 during the period 2005-2006. However, records show that the growth has been by only 70,000. PMI’s reported growth of 5% would have been much higher had it not been for their attrition of 23%. Similarly, ISACA’s growth during 2014 dropped to 4% due to their attrition of 19%. In this paper, we combine the social identity theory and communication ecology theory to propose a Social Identity Theory (SITPA) for professionals. We argue that by leveraging the social media, Voluntary Professional Associations (VPAs) can provide “value” to their members, increasing their retention rates
Role of magnetic resonance spectroscopy in grading of gliomas- a tertiary care centre study
Background: Grading of gliomas is important for the determination of appropriate treatment strategies. MR spectroscopy has found increasing utility in grading of gliomas.Methods: MR spectroscopic imaging was done for the referred patients to obtain Cho/NAA and Cho/Cr ratios. After analyzing histopathology reports, gliomas were classified into low grade and high grade. Histologically proven 54 low grade and 54 high grade gliomas were included in the study. The mean and standard deviation of these variables were obtained and compared between two groups. ROC curve analyses were performed in order to identify the optimal cut-off value for metabolite ratios for prediction purposes of high grade versus low grade gliomas.Results: The mean and SD of Cho/NAA ratio in low grade glioma was 1.93±1.19. The mean and SD of Cho /NAA ratio in high grade glioma was 3.16±1.73 was significantly higher. The optimal cut-off for differentiating low grade and high grade gliomas was 2.15 with a sensitivity of 74.07% and specificity of 66.67%. The mean and SD of CHO/Cr in low grade glioma was 2.05±0.76. The mean and SD of Cho/NAA in high grade glioma was 2.87±1.65 was significantly higher. The optimal cut-off for differentiating low grade and high grade gliomas was 1.98 with a sensitivity of 64.8% and specificity of 64.1%.Conclusions: MR spectroscopy imaging plays a pivotal role in prediction of glioma grade preoperatively and helps in deciding appropriate treatment strategies
Proposal for an experiment to search for Randall-Sundrum type corrections to Newton's law of gravitation
String theory, as well as the string inspired brane-world models such as the
Randall-Sundrum (RS) one, suggest a modification of Newton's law of gravitation
at small distance scales. Search for modifications of standard gravity is an
active field of research in this context. It is well known that short range
corrections to gravity would violate the Newton-Birkhoff theorem. Based on
calculations of RS type non-Newtonian forces for finite size spherical bodies,
we propose a torsion balance based experiment to search for the effects of
violation of this celebrated theorem valid in Newtonian gravity as well as the
general theory of relativity. We explain the main principle behind the
experiment and provide detailed calculations suggesting optimum values of the
parameters of the experiment. The projected sensitivity is sufficient to probe
the Randall-Sundrum parameter up to 10 microns.Comment: 4 pages and 5 figures, figures improved, minor clarifications and few
references added, final version to appear in PRD (rapid communications
Sonoluminescence as Quantum Vaccum Radiation
We argue that the available experimental data is not compatible with models
of sonoluminescence which invoke dynamical properties of the interface without
regard to the compositional properties of the trapped gas inside the bubble.Comment: 2 pages,Revtex,No figures,Submitted to PRL(comments
Envelope Protection for Autonomous Unmanned Aerial Vehicles
This paper describes the design, development, and testing of an automatic envelope protection system as implemented on Georgia Institute of Technology's unmanned helicopter GTMax. The envelope protection system makes use of online-learning adaptive neural networks to generate online dynamic models, which are used to estimate limits on controller commands. The system provides command capability up to the limit boundaries while preventing envelope exceedance. Simulation and flight-test results are provided for load factor and rotor stall limit protection during aggressive maneuvering
- …