123 research outputs found
Induced ferroelectric phases in TbMn_2O_5
The magnetostructural transitions and magnetoelectric effects reported in
TbMn2O5 are described theoretically and shown to correspond to two essentially
different mechanisms for the induced ferroelectricity. The incommensurate and
commensurate phases observed between 38 and 24 K exhibit a hybrid pseudoproper
ferroelectric nature resulting from an effective bilinear coupling of the
polarization with the antiferromagnetic order parameter. This explains the high
sensitivity of the dielectric properties of the material under applied magnetic
field. Below 24 K the incommensurate phase shows a standard improper
ferroelectric character induced by the coupling of two distinct magnetic order
parameters. The complex dielectric behavior observed in the material reflects
the crossover from one to the other transition regime. The temperature
dependences of the pertinent physical quantities are worked out, and previous
theoretical models are discussed
Pressure Induced Quantum Phase Transitions
A quantum critical point is approached by applying pressure in a number of
magnetic metals. The observed dependence of Tc on pressure necessarily means
that the magnetic energy is coupled to the lattice. A first order phase
transition occurs if this coupling exceeds a critical value: this is inevitable
if diverges as Tc approaches zero. It is argued that this is the cause of the
first order transition that is observed in many systems. Using Landau theory we
obtain expressions for the boundaries of the region where phase separation
occurs that agree well with experiments done on MnSi and other materials. The
theory can be used to obtain very approximate values for the temperature and
pressure at the tricritical point in terms of quantities measured at ambient
pressure and the measured values of along the second order line. The values of
the tricritical temperature for various materials obtained from Landau theory
are too low but it is shown that the predicted values will rise if the effects
of fluctuations are included.Comment: 12 pages including figure
General two-order-parameter Ginzburg-Landau model with quadratic and quartic interactions
Ginzburg-Landau model with two order parameters appears in many
condensed-matter problems. However, even for scalar order parameters, the most
general U(1)-symmetric Landau potential with all quadratic and quartic terms
contains 13 independent coefficients and cannot be minimized with
straightforward algebra. Here, we develop a geometric approach that circumvents
this computational difficulty and allows one to study properties of the model
without knowing the exact position of the minimum. In particular, we find the
number of minima of the potential, classify explicit symmetries possible in
this model, establish conditions when and how these symmetries are
spontaneously broken, and explicitly describe the phase diagram.Comment: 36 pages, 7 figures; v2: added additional clarifications and a
discussion on how this method differs from the MIB-approac
New critical behavior in unconventional ferromagnetic superconductors
New critical behavior in unconventional superconductors and superfluids is
established and described by the Wilson-Fisher renormalization-group method.
For certain ordering symmetries a new type of fluctuation-driven first order
phase transitions at finite and zero temperature are predicted. The results can
be applied to a wide class of ferromagnetic superconducting and superfluid
systems, in particular, to itinerant ferromagnets as UGe2 and URhGe.Comment: 12 pages, 6 fig
Microstructure from ferroelastic transitions using strain pseudospin clock models in two and three dimensions: a local mean-field analysis
We show how microstructure can arise in first-order ferroelastic structural
transitions, in two and three spatial dimensions, through a local meanfield
approximation of their pseudospin hamiltonians, that include anisotropic
elastic interactions. Such transitions have symmetry-selected physical strains
as their -component order parameters, with Landau free energies that
have a single zero-strain 'austenite' minimum at high temperatures, and
spontaneous-strain 'martensite' minima of structural variants at low
temperatures. In a reduced description, the strains at Landau minima induce
temperature-dependent, clock-like hamiltonians, with
-component strain-pseudospin vectors pointing to
discrete values (including zero). We study elastic texturing in five such
first-order structural transitions through a local meanfield approximation of
their pseudospin hamiltonians, that include the powerlaw interactions. As a
prototype, we consider the two-variant square/rectangle transition, with a
one-component, pseudospin taking values of , as in a
generalized Blume-Capel model. We then consider transitions with two-component
() pseudospins: the equilateral to centred-rectangle ();
the square to oblique polygon (); the triangle to oblique ()
transitions; and finally the 3D cubic to tetragonal transition (). The
local meanfield solutions in 2D and 3D yield oriented domain-walls patterns as
from continuous-variable strain dynamics, showing the discrete-variable models
capture the essential ferroelastic texturings. Other related hamiltonians
illustrate that structural-transitions in materials science can be the source
of interesting spin models in statistical mechanics.Comment: 15 pages, 9 figure
Electric-field switchable magnetization via the Dzyaloshinskii-Moriya interaction: FeTiO_3 versus BiFeO_3
In this article we review and discuss a mechanism for coupling between
electric polarization and magnetization that can ultimately lead to
electric-field switchable magnetization. The basic idea is that a ferroelectric
distortion in an antiferromagnetic material can "switch on" the
Dzyaloshinskii-Moriya interaction which leads to a canting of the
antiferromagnetic sublattice magnetizations, and thus to a net magnetization.
This magnetization M is coupled to the polarization P via a trilinear free
energy contribution of the form P(M x L), where L is the antiferromagnetic
order parameter. In particular, we discuss why such an invariant is present in
R3c FeTiO_3 but not in the isostructural multiferroic BiFeO_3. Finally, we
construct symmetry groups that in general allow for this kind of
ferroelectrically-induced weak ferromagnetism.Comment: 15 pages, 3 images, to appear in J. Phys: Condens. Matter Focus Issue
on Multiferroic
Superconducting states in the tetrahedral compound PrOs4Sb12
We find possible superconducting states for tetrahedral (Th) symmetry
crystals with strong spin-orbit coupling using Landau theory. Additional
symmetry breaking within the superconducting state is considered. We discuss
nodes of the gap functions for the different states, secondary superconducting
order parameters and coupling to the elastic strain. By comparing our results
to experiments, we find that superconductivity in PrOs4Sb12 is best described
by the three-dimensional representations of point group Th.Comment: 9 pages, 2 figures. Expanded version submitted to Physical Review
First-order structural transition in the magnetically ordered phase of Fe1.13Te
Specific heat, resistivity, magnetic susceptibility, linear thermal expansion
(LTE), and high-resolution synchrotron X-ray powder diffraction investigations
of single crystals Fe1+yTe (0.06 < y < 0.15) reveal a splitting of a single,
first-order transition for y 0.12. Most
strikingly, all measurements on identical samples Fe1.13Te consistently
indicate that, upon cooling, the magnetic transition at T_N precedes the
first-order structural transition at a lower temperature T_s. The structural
transition in turn coincides with a change in the character of the magnetic
structure. The LTE measurements along the crystallographic c-axis displays a
small distortion close to T_N due to a lattice striction as a consequence of
magnetic ordering, and a much larger change at T_s. The lattice symmetry
changes, however, only below T_s as indicated by powder X-ray diffraction. This
behavior is in stark contrast to the sequence in which the phase transitions
occur in Fe pnictides.Comment: 6 page
Prediction for new magnetoelectric fluorides
We use symmetry considerations in order to predict new magnetoelectric
fluorides. In addition to these magnetoelectric properties, we discuss among
these fluorides the ones susceptible to present multiferroic properties. We
emphasize that several materials present ferromagnetic properties. This
ferromagnetism should enhance the interplay between magnetic and dielectric
properties in these materials.Comment: 12 pages, 4 figures, To appear in Journal of Physics: Condensed
Matte
- …