84 research outputs found

    Insights into the 1968–1997 Dasht-e-Bayaz and Zirkuh earthquake sequences, eastern Iran, from calibrated relocations, InSAR and high-resolution satellite imagery

    Get PDF
    The sequence of seismicity in the Dasht-e-Bayaz and Zirkuh region of northeastern Iran, which includes 11 destructive earthquakes within a period of only 30 years, forms one of the most outstanding examples of clustered large and intermediate-magnitude seismic activity in the world.We perform a multiple-event relocation analysis, with procedures to remove systematic location bias, of 169 earthquakes, most of which occurred in the period 1968–2008, to better image the distribution of seismicity within this highly active part of Iran. The geographic locations of the clustered earthquakes were calibrated by the inclusion of phase arrivals from seismic stations at short epicentral distances, and also by matching the relative locations of the three largest events in the study to their mapped surface ruptures. The two independent calibration methods provide similar results that increase our confidence in the accuracy of the distribution of relocated epicentres. These calibrated epicentres, combined with the mapping of faults from high-resolution satellite imagery, and from an InSAR-derived constraint on fault location in one case, allow us to associate individual events with specific faults, and even with specific segments of faults, to better understand the nature of the active tectonics in this region during the past four decades. Several previous assumptions about the seismicity in this region are confirmed: (1) that the 1968 August 30 Mw 7.1 Dasht-e-Bayaz earthquake nucleated at a prominent segment boundary and left-step in the fault trace, (2) that the 1968 September 11 Mw 5.6 aftershock occurred on the Dasht-e-Bayaz fault at the eastern end of the 1968 rupture and (3) that the 1976 November 7 Mw 6.0 Qayen earthquake probably occurred on the E–W left-lateral Avash Fault. We show, in addition, that several significant events, including the 1968 September 1 and 4 (Mw 6.3 and 5.5) Ferdows earthquakes, the 1979 January 16 (Mw 6.5) and 1997 June 25 (Mw 5.9) Boznabad events and the 1979 December 7 (Mw 5.9) Kalat-e-Shur earthquake are likely to have ruptured previously unknown faults. Our improved description of the faulting involved in the 1968–1997 earthquake sequence highlights the importance of rupturing of conjugate left- and right-lateral faults in closely spaced events, or potentially even within a single earthquake, as was likely the case at the eastern end of the 1979 November 27 (Mw 7.1) Khuli-Buniabad main shock. The high level of clustered seismic activity probably results from the simultaneous activity on left- and right-lateral faults, an inherently unstable arrangement that must evolve rapidly. The combination of high-resolution satellite imagery and calibrated earthquake locations is a useful tool for investigating active tectonics, even in the absence of detailed field observations

    New insights on structure and stratigraphic interpretation for assessing the hydrocarbon potentiality of the offshore Nile Delta basin, Egypt

    Get PDF
    The study area lies around the petroleum provinces of the Egyptian Offshore Nile Delta basin. The existing exploration data are sparse, and any effort made on the strati-structural interpretation is challenging for exploratory drilling campaigns, even with meager well control. Keeping in view the issues and major challenges, the authors propose new methodologies, tools and new insights into the interpretation of the existing data and information, to make the study area more attractive for investors and detailed exploration studies. The published geological work existing within the vicinity of the study area is an added value to the new insights of current interpretation and knowledge acquisition. Pliocene–Pleistocene section is the main target in the study area, since it has quality reservoirs, holding commercial hydrocarbons. Pre-salt source rocks may have charged the reservoirs in the study area. Structural complexities and heterogeneities at target levels are likely to impact the seismic wavelet property intricacies and thus the data processing qualities. Post- and pre-salt tectonics in the northern part of Sinai, the Nile Cone, and how they affect the structural framework and the seismic interpretation work in the study area are described. For the purpose of understanding the combinational trapping mechanism, stratigraphic features and the structural geology are integrated using new tools and technologies. Several strati-structural plays are interpreted in the study area that support the detailed exploration campaigns, and the existing major hydrocarbon plays associated within shelf, slope and deep-marine geological events in nearby offshore regions. Diapir salt, rotated fault blocks and growth faults within syn-sediment systems are other plays to be investigated. The study is an effort of compiled work from many published sources, putting all ideas into a positive perspective and has better understanding of new opportunities, leads and prospects for investment purposes in the Nile Delta offshore basin

    Statistical properties of seismicity of fault zones at different evolutionary stages

    Get PDF
    We perform a systematic parameter space study of the seismic response of a large fault with different levels of heterogeneity, using a 3-D elastic framework within the continuum limit. The fault is governed by rate-and-state friction and simulations are performed for model realizations with frictional and large scale properties characterized by different ranges of size scales. We use a number of seismicity and stress functions to characterize different types of seismic responses and test the correlation between hypocenter locations and the employed distributions of model parameters. The simulated hypocenters are found to correlate significantly with small L values of the rate-and-state friction. The final sizes of earthquakes are correlated with physical properties at their nucleation sites. The obtained stacked scaling relations are overall self-similar and have good correspondence with properties of natural earthquakes
    • …
    corecore