43,327 research outputs found

    Evolution of emotions on networks leads to the evolution of cooperation in social dilemmas

    Get PDF
    We show that the resolution of social dilemmas in random graphs and scale-free networks is facilitated by imitating not the strategy of better-performing players but, rather, their emotions. We assume sympathy and envy to be the two emotions that determine the strategy of each player in any given interaction, and we define them as the probabilities of cooperating with players having a lower and a higher payoff, respectively. Starting with a population where all possible combinations of the two emotions are available, the evolutionary process leads to a spontaneous fixation to a single emotional profile that is eventually adopted by all players. However, this emotional profile depends not only on the payoffs but also on the heterogeneity of the interaction network. Homogeneous networks, such as lattices and regular random graphs, lead to fixations that are characterized by high sympathy and high envy, while heterogeneous networks lead to low or modest sympathy but also low envy. Our results thus suggest that public emotions and the propensity to cooperate at large depend, and are in fact determined by, the properties of the interaction network

    Inducing ferromagnetism and Kondo effect in platinum by paramagnetic ionic gating

    Get PDF
    Electrically controllable magnetism, which requires the field-effect manipulation of both charge and spin degrees of freedom, has attracted growing interests since the emergence of spintronics. In this work, we report the reversible electrical switching of ferromagnetic (FM) states in platinum (Pt) thin films by introducing paramagnetic ionic liquid (PIL) as the gating media. The paramagnetic ionic gating controls the movement of ions with magnetic moments, which induces itinerant ferromagnetism on the surface of Pt films with large coercivity and perpendicular anisotropy mimicking the ideal two-dimensional Ising-type FM state. The electrical transport of the induced FM state shows Kondo effect at low temperature suggesting spatially separated coexistence of Kondo scattering beneath the FM interface. The tunable FM state indicates that paramagnetic ionic gating could serve as a versatile method to induce rich transport phenomena combining field effect and magnetism at PIL-gated interfaces.Comment: 17 pages, 4 figure

    Real-time cavity QED with single atoms

    Get PDF
    We report the first measurement of the real-time evolution of the complex field amplitude brought on by single atom transits. We show the variation in time of both quadrature amplitudes (simultaneously recorded) of the light transmitted through the cavity, as well the resultant optical phase for a single atom transit event. In this particular measurement, the cavity and laser were both detuned by 10 MHz from the Cs resonance

    DNA-decorated graphene chemical sensors

    Full text link
    Graphene is a true two dimensional material with exceptional electronic properties and enormous potential for practical applications. Graphene's promise as a chemical sensor material has been noted but there has been relatively little work on practical chemical sensing using graphene, and in particular how chemical functionalization may be used to sensitize graphene to chemical vapors. Here we show one route towards improving the ability of graphene to work as a chemical sensor by using single stranded DNA as a sensitizing agent. The resulting broad response devices show fast response times, complete and rapid recovery to baseline at room temperature, and discrimination between several similar vapor analytes.Comment: 7 pages, To appear in Applied Physics Letter

    Two Dimensional Ising Superconductivity in Gated MoS2_{2}

    Get PDF
    The Zeeman effect, which is usually considered to be detrimental to superconductivity, can surprisingly protect the superconducting states created by gating a layered transition metal dichalcogenide. This effective Zeeman field, which is originated from intrinsic spin orbit coupling induced by breaking in-plane inversion symmetry, can reach nearly a hundred Tesla in magnitude. It strongly pins the spin orientation of the electrons to the out-of-plane directions and protects the superconductivity from being destroyed by an in-plane external magnetic field. In magnetotransport experiments of ionic-gate MoS2_{2} transistors, where gating prepares individual superconducting state with different carrier doping, we indeed observe a spin- protected superconductivity by measuring an in-plane critical field B\textit{B}c2_{c2} far beyond the Pauli paramagnetic limit. The gating-enhanced B\textit{B}c2_{c2} is more than an order of magnitude larger compared to the bulk superconducting phases where the effective Zeeman field is weakened by interlayer coupling. Our study gives the first experimental evidence of an Ising superconductor, in which spins of the pairing electrons are strongly pinned by an effective Zeeman field

    Extreme Nonlinear Optics in a Femtosecond Enhancement Cavity

    Full text link
    Intrinsic to the process of high-order harmonic generation is the creation of plasma and the resulting spatiotemporal distortions of the driving laser pulse. Inside a high finesse cavity where the driver pulse and gas medium are reused, this can lead to optical bistability of the cavity-plasma system, accumulated self-phase modulation of the intracavity pulse, and coupling to higher order cavity modes. We present an experimental and theoretical study of these effects and discuss their implications for power scaling of intracavity high-order harmonic generation and extreme ultraviolet frequency combs

    Far Ultraviolet Spectroscopic Explorer Observations of a Supernova Remnant in the Line of Sight to HD 5980 in the Small Magellanic Cloud

    Get PDF
    We report a detection of far ultraviolet absorption from the supernova remnant SNR 0057 - 7226 in the Small Magellanic Cloud (SMC). The absorption is seen in the Far Ultraviolet Spectroscopic Explorer (FUSE) spectrum of the LBV/WR star HD 5980. Absorption from O VI 1032 and C III 977 is seen at a velocity of +300 km/s with respect to the Galactic absorption lines, +170 km/s with respect to the SMC absorption. The O VI 1038 line is contaminated by H_2 absorption, but is present. These lines are not seen in the FUSE spectrum of Sk80, only ~1' (~17 pc) away from HD 5980. No blue-shifted O VI 1032 absorption from the SNR is seen in the FUSE spectrum. The O VI 1032 line in the SNR is well described by a Gaussian with FWHM=75 km/s. We find log N(O VI)=14.33-14.43, which is roughly 50% of the rest of the O VI column in the SMC (excluding the SNR) and greater than the O VI column in the Milky Way halo along this sight line. The N(C IV)/N(O VI) ratio for the SNR absorption is in the range of 0.12-0.17, similar to the value seen in the Milky Way disk, and lower than the halo value, supporting models in which SNRs produce the highly ionized gas close to the plane of the Galaxy, while other mechanisms occur in the halo. The N(C IV)/N(O VI) ratio is also lower than the SMC ratio along this sight line, suggesting that other mechanisms contribute to the creation of the global hot ionized medium in the SMC. The O VI, C IV, and Si IV apparent column density profiles suggest the presence of a multi-phase shell followed by a region of higher temperature gas.Comment: 7 pages, 3 figures, 2 tables, uses emulateapj5.sty. Accepted for publication in ApJ Letter

    Statistical Models of Reconstructed Phase Spaces for Signal Classification

    Get PDF
    This paper introduces a novel approach to the analysis and classification of time series signals using statistical models of reconstructed phase spaces. With sufficient dimension, such reconstructed phase spaces are, with probability one, guaranteed to be topologically equivalent to the state dynamics of the generating system, and, therefore, may contain information that is absent in analysis and classification methods rooted in linear assumptions. Parametric and nonparametric distributions are introduced as statistical representations over the multidimensional reconstructed phase space, with classification accomplished through methods such as Bayes maximum likelihood and artificial neural networks (ANNs). The technique is demonstrated on heart arrhythmia classification and speech recognition. This new approach is shown to be a viable and effective alternative to traditional signal classification approaches, particularly for signals with strong nonlinear characteristics
    • …
    corecore