1,071 research outputs found

    Noise Rectification and Fluctuations of an Asymmetric Inelastic Piston

    Full text link
    We consider a massive inelastic piston, whose opposite faces have different coefficients of restitution, moving under the action of an infinitely dilute gas of hard disks maintained at a fixed temperature. The dynamics of the piston is Markovian and obeys a continuous Master Equation: however, the asymmetry of restitution coefficients induces a violation of detailed balance and a net drift of the piston, as in a Brownian ratchet. Numerical investigations of such non-equilibrium stationary state show that the velocity fluctuations of the piston are symmetric around the mean value only in the limit of large piston mass, while they are strongly asymmetric in the opposite limit. Only taking into account such an asymmetry, i.e. including a third parameter in addition to the mean and the variance of the velocity distribution, it is possible to obtain a satisfactory analytical prediction for the ratchet drift velocity.Comment: 6 pages, 5 figures, to be published on Europhysics Letters; some references have been adde

    Irreversible effects of memory

    Full text link
    The steady state of a Langevin equation with short ranged memory and coloured noise is analyzed. When the fluctuation-dissipation theorem of second kind is not satisfied, the dynamics is irreversible, i.e. detailed balance is violated. We show that the entropy production rate for this system should include the power injected by ``memory forces''. With this additional contribution, the Fluctuation Relation is fairly verified in simulations. Both dynamics with inertia and overdamped dynamics yield the same expression for this additional power. The role of ``memory forces'' within the fluctuation-dissipation relation of first kind is also discussed.Comment: 6 pages, 1 figure, publishe

    Wave Energy: a Pacific Perspective

    Get PDF
    This is the author's peer-reviewed final manuscript, as accepted by the publisher. The published article is copyrighted by The Royal Society and can be found at: http://rsta.royalsocietypublishing.org/.This paper illustrates the status of wave energy development in Pacific Rim countries by characterizing the available resource and introducing the region‟s current and potential future leaders in wave energy converter development. It also describes the existing licensing and permitting process as well as potential environmental concerns. Capabilities of Pacific Ocean testing facilities are described in addition to the region‟s vision of the future of wave energy

    Shaken Granular Lasers

    Full text link
    Granular materials have been studied for decades, also driven by industrial and technological applications. These very simple systems, composed by agglomerations of mesoscopic particles, are characterized, in specific regimes, by a large number of metastable states and an extreme sensitivity (e.g., in sound transmission) on the arrangement of grains; they are not substantially affected by thermal phenomena, but can be controlled by mechanical solicitations. Laser emission from shaken granular matter is so far unexplored; here we provide experimental evidence that it can be affected and controlled by the status of motion of the granular, we also find that competitive random lasers can be observed. We hence demonstrate the potentialities of gravity affected moving disordered materials for optical applications, and open the road to a variety of novel interdisciplinary investigations, involving modern statistical mechanics and disordered photonics.Comment: 4 pages, 3 figures. To be published in Physical Review Letter

    Velocity fluctuations in a one dimensional Inelastic Maxwell model

    Full text link
    We consider the velocity fluctuations of a system of particles described by the Inelastic Maxwell Model. The present work extends the methods, previously employed to obtain the one-particle velocity distribution function, to the study of the two particle correlations. Results regarding both the homogeneous cooling process and the steady state driven regime are presented. In particular we obtain the form of the pair correlation function in the scaling region of the homogeneous cooling process and show that some of its moments diverge. This fact has repercussions on the behavior of the energy fluctuations of the model.Comment: 16 pages, 1 figure, to be published on Journal of Statistical Mechanics: Theory and Experiment

    Violation of the Einstein relation in Granular Fluids: the role of correlations

    Full text link
    We study the linear response in different models of driven granular gases. In some situations, even if the the velocity statistics can be strongly non-Gaussian, we do not observe appreciable violations of the Einstein formula for diffusion versus mobility. The situation changes when strong correlations between velocities and density are present: in this case, although a form of fluctuation-dissipation relation holds, the differential velocity response of a particle and its velocity self-correlation are no more proportional. This happens at high densities and strong inelasticities, but still in the fluid-like (and ergodic) regime.Comment: 18 pages, 6 figures, submitted for publicatio

    A note on the violation of the Einstein relation in a driven moderately dense granular gas

    Full text link
    The Einstein relation for a driven moderately dense granular gas in dd-dimensions is analyzed in the context of the Enskog kinetic equation. The Enskog equation neglects velocity correlations but retains spatial correlations arising from volume exclusion effects. As expected, there is a breakdown of the Einstein relation ϵ=D/(T0μ)≠1\epsilon=D/(T_0\mu)\neq 1 relating diffusion DD and mobility μ\mu, T0T_0 being the temperature of the impurity. The kinetic theory results also show that the violation of the Einstein relation is only due to the strong non-Maxwellian behavior of the reference state of the impurity particles. The deviation of ϵ\epsilon from unity becomes more significant as the solid volume fraction and the inelasticity increase, especially when the system is driven by the action of a Gaussian thermostat. This conclusion qualitatively agrees with some recent simulations of dense gases [Puglisi {\em et al.}, 2007 {\em J. Stat. Mech.} P08016], although the deviations observed in computer simulations are more important than those obtained here from the Enskog kinetic theory. Possible reasons for the quantitative discrepancies between theory and simulations are discussed.Comment: 6 figure

    Towards a continuum theory of clustering in a freely cooling inelastic gas

    Full text link
    We performed molecular dynamics simulations to investigate the clustering instability of a freely cooling dilute gas of inelastically colliding disks in a quasi-one-dimensional setting. We observe that, as the gas cools, the shear stress becomes negligibly small, and the gas flows by inertia only. Finite-time singularities, intrinsic in such a flow, are arrested only when close-packed clusters are formed. We observe that the late-time dynamics of this system are describable by the Burgers equation with vanishing viscosity, and predict the long-time coarsening behavior.Comment: 7 pages, 5 eps figures, to appear in Europhys. Let

    Attempted density blowup in a freely cooling dilute granular gas: hydrodynamics versus molecular dynamics

    Full text link
    It has been recently shown (Fouxon et al. 2007) that, in the framework of ideal granular hydrodynamics (IGHD), an initially smooth hydrodynamic flow of a granular gas can produce an infinite gas density in a finite time. Exact solutions that exhibit this property have been derived. Close to the singularity, the granular gas pressure is finite and almost constant. This work reports molecular dynamics (MD) simulations of a freely cooling gas of nearly elastically colliding hard disks, aimed at identifying the "attempted" density blowup regime. The initial conditions of the simulated flow mimic those of one particular solution of the IGHD equations that exhibits the density blowup. We measure the hydrodynamic fields in the MD simulations and compare them with predictions from the ideal theory. We find a remarkable quantitative agreement between the two over an extended time interval, proving the existence of the attempted blowup regime. As the attempted singularity is approached, the hydrodynamic fields, as observed in the MD simulations, deviate from the predictions of the ideal solution. To investigate the mechanism of breakdown of the ideal theory near the singularity, we extend the hydrodynamic theory by accounting separately for the gradient-dependent transport and for finite density corrections.Comment: 11 pages, 9 figures, accepted for publication on Physical Review
    • …
    corecore