1,027 research outputs found

    Atmospheric and oceanic impacts of Antarctic glaciation across the Eocene-Oligocene transition

    Get PDF
    The glaciation of Antarctica at the Eocene–Oligocene transition (approx. 34 million years ago) was a major shift in the Earth’s climate system, but the mechanisms that caused the glaciation, and its effects, remain highly debated. A number of recent studies have used coupled atmosphere–ocean climate models to assess the climatic effects of Antarctic glacial inception, with often contrasting results. Here, using the HadCM3L model, we show that the global atmosphere and ocean response to growth of the Antarctic ice sheet is sensitive to subtle variations in palaeogeography, using two reconstructions representing Eocene and Oligocene geological stages. The earlier stage (Eocene; Priabonian), which has a relatively constricted Tasman Seaway, shows a major increase in sea surface temperature over the Pacific sector of the Southern Ocean in response to the ice sheet. This response does not occur for the later stage (Oligocene; Rupelian), which has a more open Tasman Seaway. This difference in temperature response is attributed to reorganization of ocean currents between the stages. Following ice sheet expansion in the earlier stage, the large Ross Sea gyre circulation decreases in size. Stronger zonal flow through the Tasman Seaway allows salinities to increase in the Ross Sea, deep-water formation initiates and multiple feedbacks then occur amplifying the temperature response. This is potentially a model-dependent result, but it highlights the sensitive nature of model simulations to subtle variations in palaeogeography, and highlights the need for coupled ice sheet–climate simulations to properly represent and investigate feedback processes acting on these time scales

    A new microbothriid monogenean Dermopristis pterophilus n. sp. from the skin of the Critically Endangered green sawfish Pristis zijsron Bleeker, 1851 (Batoidea: Pristidae) in Western Australia

    Get PDF
    A new microbothriid monogenean Dermopristis pterophilus n. sp. is described from the skin of the Critically Endangered green sawfish Pristis zijsron Bleeker, 1851 in the Ashburton River delta, northern Western Australia. Analyses of the 28S ribosomal DNA marker and the molecular barcoding markers Histone 3 and Elongation Factor 1 α confirmed position among the Microbothriidae, with close affinity to the only other sequenced representative of Dermopristis Kearn, Whittington and Evans-Groing, 2010. The new species is morphologically consistent with the concept of Dermopristis; it has two testes, lacks a male copulatory organ and has a simple haptor. It is smaller than its two congeners D. paradoxus Kearn, Whittington and Evans-Gowing, 2010 and D. cairae Whittington and Kearn, 2011 and is most similar to the former, distinguished only in that it lacks the strong, transverse, parallel ridges on the ventral body surface that characterise that species. It is more easily distinguished from D. cairae, differing in body shape, possession of a seminal receptacle, and relative position and size of the haptor. It may further differ from both species by fine details of the gut diverticula, although these details are difficult to ascertain. Spermatophores were observed in the new species, similar to those previously reported for D. cairae. The new species exhibits site attachment preference: infections were greatest on and immediately adjacent to the host pelvic fins (including male reproductive organs, i.e. claspers), moderate in proximity to the dorsal and pectoral fins, few on the caudal fin and peduncle, and infrequently, isolated worms occurred elsewhere on the dorsal and ventral surfaces of the body. There was no incidence of infection on the head (including rostrum). We presume D. pterophilus is restricted to P. zijsron and thus likely faces the same threat of extinction

    Processing liquid metal for conformable electronics

    Get PDF
    Future generations of robots, electronics, and assistive medical devices will include systems that are soft, elastically deformable, and may adapt their functionality in unstructured environments. This will require soft active materials for power circuits and sensing of deformation and contact pressure. Liquid-embedded elastomer electronics offer one solution as key elements of highly deformable and soft robotic systems. Several designs for stretchable conductors and soft sensory skins (including strain, pressure, and curvature sensors) based on a liquid-embedded-elastomer approach have been developed. Many of these fluid–elastomer composites utilize liquid metal alloys due to their high conductivities and inherent compliance. Understanding how these alloys can be processed for high-yield manufacturability is critical to the development of parallel processing technology, which is needed to create more complex and low-cost systems. This discussion will highlight surface interactions between droplets of gallium–indium alloys and elastomeric substrates, and the implementation of this study to selective patterning, direct-writing, and inkjet printing of hyperelastic electronic components

    Factors affecting internal standard selection for quantitative elemental bio-imaging of soft tissues by LA-ICP-MS

    Full text link
    Element response variations under different laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) operating conditions were investigated to identify important factors for selecting an internal standard (IS) for quantitative elemental bio-imaging. Analytes covering a range of atomic masses and first ionisation potentials (FIP) were selected to investigate the signal response variation with changes in laser spot diameter, mass bias and cell sampling position. In all cases, an IS improved experimental precision regardless of a close match in element mass or FIP but optimal analyte/IS combinations depended on the difference in masses of the analyte and IS. Particular attention was paid to 13C as this isotope is typically used as an IS in elemental bio-imaging applications. Despite its non-ideal IS characteristics (often different mass and FIP to many analytes), possibility of abundance sensitivity effects and poor signal-to-background ratio, 13C was a suitable IS candidate exhibiting a linear response with respect to the mass ablated, apparent independence from the high abundance of the adjacent 14N mass peak and effective analyte normalisation after background subtraction as long as the 13C signal from the sample was at least 6% of the gross signal. © 2011 The Royal Society of Chemistry

    An argument for the use of Aristotelian method in bioethics

    Get PDF
    The main claim of this paper is that the method outlined and used in Aristotle's Ethics is an appropriate and credible one to use in bioethics. Here “appropriate” means that the method is capable of establishing claims and developing concepts in bioethics and “credible” that the method has some plausibility, it is not open to obvious and immediate objection. It begins by suggesting why this claim matters and then gives a brief outline of Aristotle's method. The main argument is made in three stages. First, it is argued that Aristotelian method is credible because it compares favourably with alternatives. In this section it is shown that Aristotelian method is not vulnerable to criticisms that are made both of methods that give a primary place to moral theory (such as utilitarianism) and those that eschew moral theory (such as casuistry and social science approaches). As such, it compares favourably with these other approaches that are vulnerable to at least some of these criticisms. Second, the appropriateness of Aristotelian method is indicated through outlining how it would deal with a particular case. Finally, it is argued that the success of Aristotle's philosophy is suggestive of both the credibility and appropriateness of his method.</p

    NbSe3: Effect of Uniaxial Stress on the Threshold Field and Fermiology

    Full text link
    We have measured the effect of uniaxial stress on the threshold field ET for the motion of the upper CDW in NbSe3. ET exhibits a critical behavior, ET ~ (1 - e/ec)^g, wher e is the strain, and ec is about 2.6% and g ~ 1.2. This ecpression remains valid over more than two decades of ET, up to the highest fields of about 1.5keV/m. Neither g nor ec is very sensitive to the impurity concentraction. The CDW transition temperature Tp decreases linearly with e at a rate dTp/de = -10K/%, and it does not show any anomaly near ec. Shubnikov de-Haas measurements show that the extremal area of the Fermi surface decreases with increasing strain. The results suggest that there is an intimate relationship between pinning of the upper CDW and the Fermiology of NbSe3.Comment: 4 pages, 5 figure

    Characterization of the equine 2\u27-5\u27 oligoadenylate synthetase 1 (OAS1) and ribonuclease L (RNASEL) innate immunity genes

    Get PDF
    BACKGROUND: The mammalian OAS/RNASEL pathway plays an important role in antiviral host defense. A premature stop-codon within the murine Oas1b gene results in the increased susceptibility of mice to a number of flaviviruses, including West Nile virus (WNV). Mutations in either the OAS1 or RNASEL genes may also modulate the outcome of WNV-induced disease or other viral infections in horses. Polymorphisms in the human OAS gene cluster have been previously utilized for case-control analysis of virus-induced disease in humans. No polymorphisms have yet been identified in either the equine OAS1 or RNASEL genes for use in similar case-control studies. RESULTS: Genomic sequence for equine OAS1 was obtained from a contig assembly generated from a shotgun subclone library of CHORI-241 BAC 100I10. Specific amplification of regions of the OAS1 gene from 13 horses of various breeds identified 33 single nucleotide polymorphisms (SNP) and two microsatellites. RNASEL cDNA sequences were determined for 8 mammals and utilized in a phylogenetic analysis. The chromosomal location of the RNASEL gene was assigned by FISH to ECA5p17-p16 using two selected CHORI-241 BAC clones. The horse genomic RNASEL sequence was assembled. Specific amplification of regions of the RNASEL gene from 13 horses identified 31 SNPs. CONCLUSION: In this report, two dinucleotide microsatellites and 64 single nucleotide polymorphisms within the equine OAS1 and RNASEL genes were identified. These polymorphisms are the first to be reported for these genes and will facilitate future case-control studies of horse susceptibility to infectious diseases

    Characterization of the equine 2'-5' oligoadenylate synthetase 1 (OAS1) and ribonuclease L (RNASEL) innate immunity genes

    Get PDF
    Background The mammalian OAS/RNASEL pathway plays an important role in antiviral host defense. A premature stop-codon within the murine Oas1b gene results in the increased susceptibility of mice to a number of flaviviruses, including West Nile virus (WNV). Mutations in either the OAS1 or RNASEL genes may also modulate the outcome of WNV-induced disease or other viral infections in horses. Polymorphisms in the human OAS gene cluster have been previously utilized for case-control analysis of virus-induced disease in humans. No polymorphisms have yet been identified in either the equine OAS1 or RNASEL genes for use in similar case-control studies. Results Genomic sequence for equine OAS1 was obtained from a contig assembly generated from a shotgun subclone library of CHORI-241 BAC 100I10. Specific amplification of regions of the OAS1 gene from 13 horses of various breeds identified 33 single nucleotide polymorphisms (SNP) and two microsatellites. RNASEL cDNA sequences were determined for 8 mammals and utilized in a phylogenetic analysis. The chromosomal location of the RNASEL gene was assigned by FISH to ECA5p17-p16 using two selected CHORI-241 BAC clones. The horse genomic RNASEL sequence was assembled. Specific amplification of regions of the RNASEL gene from 13 horses identified 31 SNPs. Conclusion In this report, two dinucleotide microsatellites and 64 single nucleotide polymorphisms within the equine OAS1 and RNASEL genes were identified. These polymorphisms are the first to be reported for these genes and will facilitate future case-control studies of horse susceptibility to infectious diseases

    Evaluation of Concordance Between Original Death Certifications and an Expert Panel Process in the Determination of Sudden Unexplained Death in Childhood

    Get PDF
    Importance: The true incidence of sudden unexplained death in childhood (SUDC), already the fifth leading category of death among toddlers by current US Centers for Disease Control and Prevention estimates, is potentially veiled by the varied certification processes by medicolegal investigative offices across the United States. Objective: To evaluate the frequency of SUDC incidence, understand its epidemiology, and assess the consistency of death certification among medical examiner and coroner offices in the US death investigation system. Design, Setting, and Participants: In this case series, 2 of 13 forensic pathologists (FPs) conducted masked reviews of 100 cases enrolled in the SUDC Registry and Research Collaborative (SUDCRRC). Children who died aged 11 months to 18 years from 36 US states, Canada, and the United Kingdom had been posthumously enrolled in the SUDCRRC by family members from 2014 to 2017. Comprehensive data from medicolegal investigative offices, clinical offices, and family members were reviewed. Data analysis was conducted from December 2014 to June 2020. Main Outcomes and Measures: Certified cause of death (COD) characterized as explained (accidental or natural) or unexplained, as determined by SUDCRRC masked review process. Results: In this study of 100 cases of SUDC (mean [SD] age, 32.1 [31.8] months; 58 [58.0%] boys; 82 [82.0%] White children; 92 [92.0%] from the United States), the original pathologist certified 43 cases (43.0%) as explained COD and 57 (57.0%) as unexplained COD. The SUDCRRC review process led to the following certifications: 16 (16.0%) were explained, 7 (7.0%) were undetermined because of insufficient data, and 77 (77.0%) were unexplained. Experts disagreed with the original COD in 40 cases (40.0%). These data suggest that SUDC incidence is higher than the current Centers for Disease Control and Prevention estimate (ie, 392 deaths in 2018). Conclusions and Relevance: To our knowledge, this is the first comprehensive masked forensic pathology review process of sudden unexpected pediatric deaths, and it suggests that SUDC may often go unrecognized in US death investigations. Some unexpected pediatric deaths may be erroneously attributed to a natural or accidental COD, negatively affecting surveillance, research, public health funding, and medical care of surviving family members. To further address the challenges of accurate and consistent death certification in SUDC, future studies are warranted

    Adsorption and reaction of CO on (Pd–)Al2O3 and (Pd–)ZrO2: vibrational spectroscopy of carbonate formation

    Get PDF
    γ-Alumina is widely used as an oxide support in catalysis, and palladium nanoparticles supported by alumina represent one of the most frequently used dispersed metals. The surface sites of the catalysts are often probed via FTIR spectroscopy upon CO adsorption, which may result in the formation of surface carbonate species. We have examined this process in detail utilizing FTIR to monitor carbonate formation on γ-alumina and zirconia upon exposure to isotopically labelled and unlabelled CO and CO2. The same was carried out for well-defined Pd nanoparticles supported on Al2O3 or ZrO2. A water gas shift reaction of CO with surface hydroxyls was detected, which requires surface defect sites and adjacent OH groups. Furthermore, we have studied the effect of Cl synthesis residues, leading to strongly reduced carbonate formation and changes in the OH region (isolated OH groups were partly replaced or were even absent). To corroborate this finding, samples were deliberately poisoned with Cl to an extent comparable to that of synthesis residues, as confirmed by Auger electron spectroscopy. For catalysts prepared from Cl-containing precursors a new CO band at 2164 cm−1 was observed in the carbonyl region, which was ascribed to Pd interacting with Cl. Finally, the FTIR measurements were complemented by quantification of the amount of carbonates formed via chemisorption, which provides a tool to determine the concentration of reactive defect sites on the alumina surface
    • 

    corecore