35,066 research outputs found

    The DCU laser ion source

    Get PDF
    Laser ion sources are used to generate and deliver highly charged ions of various masses and energies. We present details on the design and basic parameters of the DCU laser ion source (LIS). The theoretical aspects of a high voltage (HV) linear LIS are presented and the main issues surrounding laser-plasma formation, ion extraction and modeling of beam transport in relation to the operation of a LIS are detailed. A range of laser power densities (I ∼ 108–1011 W cm−2) and fluences (F = 0.1–3.9 kJ cm−2) from a Q-switched ruby laser (full-width half-maximum pulse duration ∼ 35 ns, λ = 694 nm) were used to generate a copper plasma. In “basic operating mode,” laser generated plasma ions are electrostatically accelerated using a dc HV bias (5–18 kV). A traditional einzel electrostatic lens system is utilized to transport and collimate the extracted ion beam for detection via a Faraday cup. Peak currents of up to I ∼ 600 μA for Cu+ to Cu3+ ions were recorded. The maximum collected charge reached 94 pC (Cu2+). Hydrodynamic simulations and ion probe diagnostics were used to study the plasma plume within the extraction gap. The system measured performance and electrodynamic simulations indicated that the use of a short field-free (L = 48 mm) region results in rapid expansion of the injected ion beam in the drift tube. This severely limits the efficiency of the electrostatic lens system and consequently the sources performance. Simulations of ion beam dynamics in a “continuous einzel array” were performed and experimentally verified to counter the strong space-charge force present in the ion beam which results from plasma extraction close to the target surface. Ion beam acceleration and injection thus occur at “high pressure.” In “enhanced operating mode,” peak currents of 3.26 mA (Cu2+) were recorded. The collected currents of more highly charged ions (Cu4+–Cu6+) increased considerably in this mode of operation

    Stripe phases in the two-dimensional Falicov-Kimball model

    Full text link
    The observation of charge stripe order in the doped nickelate and cuprate materials has motivated much theoretical effort to understand the underlying mechanism of the stripe phase. Numerical studies of the Hubbard model show two possibilities: (i) stripe order arises from a tendency toward phase separation and its competition with the long-range Coulomb interaction or (ii) stripe order inherently arises as a compromise between itinerancy and magnetic interactions. Here we determine the restricted phase diagrams of the two-dimensional Falicov-Kimball model and see that it displays rich behavior illustrating both possibilities in different regions of the phase diagram.Comment: (5 pages, 3 figures

    Development of a Low-Noise High Common-Mode-Rejection Instrumentation Amplifier

    Get PDF
    Several previously used instrumentation amplifier circuits were examined to find limitations and possibilities for improvement. One general configuration is analyzed in detail, and methods for improvement are enumerated. An improved amplifier circuit is described and analyzed with respect to common mode rejection and noise. Experimental data are presented showing good agreement between calculated and measured common mode rejection ratio and equivalent noise resistance. The amplifier is shown to be capable of common mode rejection in excess of 140 db for a trimmed circuit at frequencies below 100 Hz and equivalent white noise below 3.0 nv/square root of Hz above 1000 Hz

    Design of a Torque Current Generator for Strapdown Gyroscopes

    Get PDF
    The design, analysis, and experimental evaluation of an optimum performance torque current generator for use with strapdown gyroscopes, is presented. Among the criteria used to evaluate the design were the following: (1) steady-state accuracy; (2) margins of stability against self-oscillation; (3) temperature variations; (4) aging; (5) static errors drift errors, and transient errors, (6) classical frequency and time domain characteristics; and (7) the equivalent noise at the input of the comparater operational amplifier. The DC feedback loop of the torque current generator was approximated as a second-order system. Stability calculations for gain margins are discussed. Circuit diagrams are shown and block diagrams showing the implementation of the torque current generator are discussed

    Influence of temper condition on the nonlinear stress-strain behavior of boron-aluminum

    Get PDF
    The influence of temper condition on the tensile and compressive stress-strain behavior for six boron-aluminum laminates was investigated. In addition to monotonic tension and compression tests, tension-tension, compression-compression, and tension--compression tests were conducted to study the effects of cyclic loading. Tensile strength results are a function of the laminate configuration; unidirectional laminates were affected considerably more than other laminates with some strength values increasing and others decreasing

    Planet formation around stars of various masses: The snow line and the frequency of giant planets

    Full text link
    We use a semi-analytic circumstellar disk model that considers movement of the snow line through evolution of accretion and the central star to investigate how gas giant frequency changes with stellar mass. The snow line distance changes weakly with stellar mass; thus giant planets form over a wide range of spectral types. The probability that a given star has at least one gas giant increases linearly with stellar mass from 0.4 M_sun to 3 M_sun. Stars more massive than 3 M_sun evolve quickly to the main-sequence, which pushes the snow line to 10-15 AU before protoplanets form and limits the range of disk masses that form giant planet cores. If the frequency of gas giants around solar-mass stars is 6%, we predict occurrence rates of 1% for 0.4 M_sun stars and 10% for 1.5 M_sun stars. This result is largely insensitive to our assumed model parameters. Finally, the movement of the snow line as stars >2.5 M_sun move to the main-sequence may allow the ocean planets suggested by Leger et. al. to form without migration.Comment: Accepted to ApJ. 12 pages of emulateap

    Development of a digital electronic rebalance loop for a dry tuned-rotor two degree-of-freedom gyroscope

    Get PDF
    Digital electronic rebalance loops were designed and implemented in brassboard form to capture both X and Y axes of the Kearfott Gyroflex. The loops were width-modulated binary types using a 614.4 kHz keying signal and a 2.4 kHz sample frequency. The loops were designed for a torquing rate of 2 deg/sec (70.6 mA torquing current) and a data resolution of 23.4 milli-arc-sec per data pulse. Design considerations, implementation details, and preliminary experimental results are presented

    Transforming fixed-length self-avoiding walks into radial SLE_8/3

    Full text link
    We conjecture a relationship between the scaling limit of the fixed-length ensemble of self-avoiding walks in the upper half plane and radial SLE with kappa=8/3 in this half plane from 0 to i. The relationship is that if we take a curve from the fixed-length scaling limit of the SAW, weight it by a suitable power of the distance to the endpoint of the curve and then apply the conformal map of the half plane that takes the endpoint to i, then we get the same probability measure on curves as radial SLE. In addition to a non-rigorous derivation of this conjecture, we support it with Monte Carlo simulations of the SAW. Using the conjectured relationship between the SAW and radial SLE, our simulations give estimates for both the interior and boundary scaling exponents. The values we obtain are within a few hundredths of a percent of the conjectured values

    System configuration and executive requirements specifications for reusable shuttle and space station/base

    Get PDF
    System configuration and executive requirements specifications for reusable shuttle and space station/bas

    Wireless, in-vessel neutron monitor for initial core-loading of advanced breeder reactors

    Get PDF
    An experimental wireless, in-vessel neutron monitor was developed to measure the reactivity of an advanced breeder reactor as the core is loaded for the first time to preclude an accidental critically incident. The environment is liquid sodium at a temperature of approx. 220 C, with negligible gamma or neutron radiation. With ultrasonic transmission of neutron data, no fundamental limitation was observed after tests at 230 C for 2000 h. The neutron sensitivity was approx. 1 count/s-nv, and the potential data transmission rate was approx. 10,000 counts/s
    corecore