14,386 research outputs found

    Prediction and analysis of long-term variability of temperature and salinity in the Irish Sea

    Get PDF
    The variability of temperature and salinity in the Irish Sea over the 40 year period 1960 - 1999 is investigated using a free-running fine-resolution local area model. The skill of the model to represent observed temperature and salinity variability is assessed using conductivity-temperature-depth survey data ( 3397 profiles) and a long time series of measurements from Cypris station (southwest of Isle of Man). This clearly demonstrates that the model can reproduce the observed seasonal and longer-term cycles in temperature, with mean and RMS errors of - 0.01 degrees C and 0.78 degrees C. Particularly apparent is the long-term warming trend at Cypris station and throughout the model domain. Model estimates of salinity are less accurate and are generally too saline (mean and RMS errors are 0.79 and 0.98 practical salinity units). Inaccuracies are likely to arise from boundary conditions and forcing (riverine and surface). However, while absolute values are not particularly well represented, the model reproduces many of the trends in the salinity variability observed at Cypris station, suggesting that the dominant physical processes in the Irish Sea, with timescales up to similar to 3 years, are well represented. The model is also used to investigate the variability in temperature stratification. While stratification is confined to approximately the same geographical area in each year of the simulation, there is significant variability in the timing of the onset and breakdown of stratification and in the peak surface to bed temperature difference. Together, these results suggest that a local area model with limited boundary conditions may be sufficiently accurate for climatic investigation of some (locally forced) parameter

    Microscopic Restoration of Proton-Neutron Mixed Symmetry in Weakly Collective Nuclei

    Get PDF
    Starting from the microscopic low-momentum nucleon-nucleon interaction V{low k}, we present the first systematic shell model study of magnetic moments and magnetic dipole transition strengths of the basic low-energy one-quadrupole phonon excitations in nearly-spherical nuclei. Studying in particular the even-even N=52 isotones from 92Zr to 100Cd, we find the predicted evolution of the predominantly proton-neutron non-symmetric state reveals a restoration of collective proton-neutron mixed-symmetry structure near mid-shell. This provides the first explanation for the existence of pronounced collective mixed-symmetry structures in weakly-collective nuclei.Comment: 5 Pages, 3 figure

    Shell model description of the 14C dating beta decay with Brown-Rho-scaled NN interactions

    Full text link
    We present shell model calculations for the beta-decay of the 14C ground state to the 14N ground state, treating the states of the A=14 multiplet as two 0p holes in an 16O core. We employ low-momentum nucleon-nucleon (NN) interactions derived from the realistic Bonn-B potential and find that the Gamow-Teller matrix element is too large to describe the known lifetime. By using a modified version of this potential that incorporates the effects of Brown-Rho scaling medium modifications, we find that the GT matrix element vanishes for a nuclear density around 85% that of nuclear matter. We find that the splitting between the (J,T)=(1+,0) and (J,T)=(0+,1) states in 14N is improved using the medium-modified Bonn-B potential and that the transition strengths from excited states of 14C to the 14N ground state are compatible with recent experiments.Comment: 4 pages, 5 figures Updated to include referee comments/suggestion

    Low-momentum ring diagrams of neutron matter at and near the unitary limit

    Full text link
    We study neutron matter at and near the unitary limit using a low-momentum ring diagram approach. By slightly tuning the meson-exchange CD-Bonn potential, neutron-neutron potentials with various 1S0^1S_0 scattering lengths such as as=−12070fma_s=-12070fm and +21fm+21fm are constructed. Such potentials are renormalized with rigorous procedures to give the corresponding asa_s-equivalent low-momentum potentials Vlow−kV_{low-k}, with which the low-momentum particle-particle hole-hole ring diagrams are summed up to all orders, giving the ground state energy E0E_0 of neutron matter for various scattering lengths. At the limit of as→±∞a_s\to \pm \infty, our calculated ratio of E0E_0 to that of the non-interacting case is found remarkably close to a constant of 0.44 over a wide range of Fermi-momenta. This result reveals an universality that is well consistent with the recent experimental and Monte-Carlo computational study on low-density cold Fermi gas at the unitary limit. The overall behavior of this ratio obtained with various scattering lengths is presented and discussed. Ring-diagram results obtained with Vlow−kV_{low-k} and those with GG-matrix interactions are compared.Comment: 9 pages, 7 figure

    Positron lifetime studies in thermoplastic polyimide test specimens

    Get PDF
    Positron lifetime measurements were made in two thermoplastic polyimide materials recently developed at Langley. The long component lifetime values in polyimidesulfone samples are 847 + or - 81 Ps (dry) and 764 + or - 91 Ps (saturated). The corresponding values in LARC thermoplastic imides are 1080 + or - 139 Ps (dry) and 711 + or - 96 Ps (saturated). Clearly, the presence of moisture has greater effect on positron lifetime in LARC thermoplastic imides than in the case of polyimidesulfones. This result is consistent with the photomicrographic observations made on frozen water saturated specimens of these materials

    Gas outflows in radio galaxies

    Get PDF
    We present a summary of our recent results on gas outflows in radio galaxies. Fast outflows (up to 2000 km/s) have been detected both in ionized and neutral gas. The latter is particularly surprising as it shows that, despite the extremely energetic phenomena occurring near an AGN, some of the outflowing gas remains, or becomes again, neutral. These results are giving new and important insights on the physical conditions of the gaseous medium around an AGN.Comment: To appear in the proceedings of the IAU Symposium #217, Recycling Intergalactic and Interstellar Matter, eds. P.-A. Duc, J. Braine, and E. Brinks, 6 pages. The full paper with high resolution images can be downloaded from http://www.astron.nl/~morganti/Papers/outflows.ps.g
    • …
    corecore