1,283 research outputs found

    A Systematic Search for High Surface Brightness Giant Arcs in a Sloan Digital Sky Survey Cluster Sample

    Get PDF
    We present the results of a search for gravitationally-lensed giant arcs conducted on a sample of 825 SDSS galaxy clusters. Both a visual inspection of the images and an automated search were performed and no arcs were found. This result is used to set an upper limit on the arc probability per cluster. We present selection functions for our survey, in the form of arc detection efficiency curves plotted as functions of arc parameters, both for the visual inspection and the automated search. The selection function is such that we are sensitive only to long, high surface brightness arcs with g-band surface brightness mu_g 10. Our upper limits on the arc probability are compatible with previous arc searches. Lastly, we report on a serendipitous discovery of a giant arc in the SDSS data, known inside the SDSS Collaboration as Hall's arc.Comment: 34 pages,8 Fig. Accepted ApJ:Jan-200

    The Mean and Scatter of the Velocity Dispersion-Optical Richness Relation for maxBCG Galaxy Clusters

    Get PDF
    The distribution of galaxies in position and velocity around the centers of galaxy clusters encodes important information about cluster mass and structure. Using the maxBCG galaxy cluster catalog identified from imaging data obtained in the Sloan Digital Sky Survey, we study the BCG-galaxy velocity correlation function. By modeling its non-Gaussianity, we measure the mean and scatter in velocity dispersion at fixed richness. The mean velocity dispersion increases from 202+/-10 km/s for small groups to more than 854+/-102 km/s for large clusters. We show the scatter to be at most 40.5+/-3.5%, declining to 14.9+/-9.4% in the richest bins. We test our methods in the C4 cluster catalog, a spectroscopic cluster catalog produced from the Sloan Digital Sky Survey DR2 spectroscopic sample, and in mock galaxy catalogs constructed from N-body simulations. Our methods are robust, measuring the scatter to well within one-sigma of the true value, and the mean to within 10%, in the mock catalogs. By convolving the scatter in velocity dispersion at fixed richness with the observed richness space density function, we measure the velocity dispersion function of the maxBCG galaxy clusters. Although velocity dispersion and richness do not form a true mass-observable relation, the relationship between velocity dispersion and mass is theoretically well characterized and has low scatter. Thus our results provide a key link between theory and observations up to the velocity bias between dark matter and galaxies.Comment: 25 pages, 15 figures, 2 tables, published in Ap

    SDSS-RASS: Next Generation of Cluster-Finding Algorithms

    Get PDF
    We outline here the next generation of cluster-finding algorithms. We show how advances in Computer Science and Statistics have helped develop robust, fast algorithms for finding clusters of galaxies in large multi-dimensional astronomical databases like the Sloan Digital Sky Survey (SDSS). Specifically, this paper presents four new advances: (1) A new semi-parametric algorithm - nicknamed ``C4'' - for jointly finding clusters of galaxies in the SDSS and ROSAT All-Sky Survey databases; (2) The introduction of the False Discovery Rate into Astronomy; (3) The role of kernel shape in optimizing cluster detection; (4) A new determination of the X-ray Cluster Luminosity Function which has bearing on the existence of a ``deficit'' of high redshift, high luminosity clusters. This research is part of our ``Computational AstroStatistics'' collaboration (see Nichol et al. 2000) and the algorithms and techniques discussed herein will form part of the ``Virtual Observatory'' analysis toolkit.Comment: To appear in Proceedings of MPA/MPE/ESO Conference "Mining the Sky", July 31 - August 4, 2000, Garching, German

    Identification of A-colored Stars and Structure in the Halo of the Milky Way from SDSS Commissioning Data

    Get PDF
    A sample of 4208 objects with magnitude 15 < g* < 22 and colors of main sequence A stars has been selected from 370 square degrees of Sloan Digital Sky Survey (SDSS) commissioning observations. The data is from two long, narrow stripes, each with an opening angle of greater than 60 deg, at Galactic latitudes 36 < abs(b) < 63 on the celestial equator. An examination of the sample's distribution shows that these stars trace considerable substructure in the halo. Large overdensities of A-colored stars in the North at (l,b,R) = (350, 50, 46 kpc) and in the South at (157, -58, 33 kpc) and extending over tens of degrees are present in the halo of the Milky Way. Using photometry to separate the stars by surface gravity, both structures are shown to contain a sequence of low surface gravity stars consistent with identification as a blue horizontal branch (BHB). Both structures also contain a population of high surface gravity stars two magnitudes fainter than the BHB stars, consistent with their identification as blue stragglers (BSs). From the numbers of detected BHB stars, lower limits to the implied mass of the structures are 6x10^6 M_sun and 2x10^6 M_sun. The fact that two such large clumps have been detected in a survey of only 1% of the sky indicates that such structures are not uncommon in the halo. Simple spheroidal parameters are fit to a complete sample of the remaining unclumped BHB stars and yield (at r < 40 kpc) a fit to a halo distribution with flattening (c/a = 0.65+/-0.2) and a density falloff exponent of alpha = -3.2+/-0.3.Comment: AASTeX v5_0, 26 pages, 1 table, 20 figures, ApJ accepte

    DECam integration tests on telescope simulator

    Full text link
    The Dark Energy Survey (DES) is a next generation optical survey aimed at measuring the expansion history of the universe using four probes: weak gravitational lensing, galaxy cluster counts, baryon acoustic oscillations, and Type Ia supernovae. To perform the survey, the DES Collaboration is building the Dark Energy Camera (DECam), a 3 square degree, 570 Megapixel CCD camera which will be mounted at the Blanco 4-meter telescope at the Cerro Tololo Inter- American Observatory. DES will survey 5000 square degrees of the southern galactic cap in 5 filters (g, r, i, z, Y). DECam will be comprised of 74 250 micron thick fully depleted CCDs: 62 2k x 4k CCDs for imaging and 12 2k x 2k CCDs for guiding and focus. Construction of DECam is nearing completion. In order to verify that the camera meets technical specifications for DES and to reduce the time required to commission the instrument, we have constructed a full sized telescope simulator and performed full system testing and integration prior to shipping. To complete this comprehensive test phase we have simulated a DES observing run in which we have collected 4 nights worth of data. We report on the results of these unique tests performed for the DECam and its impact on the experiments progress.Comment: Proceedings of the 2nd International Conference on Technology and Instrumentation in Particle Physics (TIPP 2011). To appear in Physics Procedia. 8 pages, 3 figure

    Galaxy-Quasar correlations between APM galaxies and Hamburg-ESO QSOs

    Full text link
    We detect angular galaxy-QSO cross-correlations between the APM Galaxy Catalogue and a preliminary release (consisting of roughly half of the anticipated final catalogue) of the Hamburg-ESO Catalogue of Bright QSOs as a function of source QSO redshift using multiple cross-correlation estimators. Each of the estimators yield very similar results, implying that the APM catalogue and the Hamburg-ESO survey are both fair samples of the respective true galaxy and QSO populations. Though the signal matches the expectations of gravitational lensing qualitatively, the strength of the measured cross-correlation signal is significantly greater than the CDM models of lensing by large scale structure would suggest. This same disagreement between models and observation has been found in several earlier studies. We estimate our confidence in the correlation detections versus redshift by generating 1000 random realizations of the Hamburg-ESO QSO survey: We detect physical associations between galaxies and low-redshift QSOs at 99% confidence and detect lensing associations at roughly 95% confidence for QSOs with redshifts between 0.6 and 1. Control cross-correlations between Galactic stars and QSOs show no signal. Finally, the overdensities (underdensities) of galaxies near QSO positions relative to those lying roughly 135 - 150 arcmin away are uncorrelated with differences in Galactic extinction between the two regions, implying that Galactic dust is not significantly affecting the QSO sample.Comment: 35 pages total, including 9 figures. Accepted by the Astrophysical Journa

    High-Redshift Quasars Found in Sloan Digital Sky Survey Commissioning Data III: A Color Selected Sample at i^*<20 in the Fall Equatorial Stripe

    Get PDF
    This is the third paper in a series aimed at finding high-redshift quasars from five-color (u'g'r'i'z') imaging data taken along the Celestial Equator by the SDSS during its commissioning phase. In this paper, we first present the observations of 14 bright high-redshift quasars (3.66<z<4.77, i^*<20) discovered in the SDSS Fall Equatorial Stripe, and the SDSS photometry of two previously known high-redshift quasars in the same region of the sky. Combined with the quasars presented in previous papers, we define a color-selected flux-limited sample of 39 quasars at 3.6 < z < 5.0 and i^*<20, covering a total effective area of 182 deg^2. From this sample, we estimate the average spectral power law slope in the rest-frame ultraviolet for quasars at z~4 to be -0.79 with a standard deviation of 0.34, and the average rest-frame equivalent width of the Ly alpha+N V emission line to be 69 A with a standard deviation of 18 A. The selection completeness of this multicolor sample is determined from the model colors of high-redshift quasars, taking into account the distributions of emission line strengths, intrinsic continuum slope, the line and continuum absorption from intervening material, and the effects of photometric errors. The average completeness of this sample is about 75%. The selection function calculated in this paper will be used to correct the incompleteness of this color-selected sample and to derive the high-redshift quasar luminosity function in a subsequent paper. In the Appendix, we present the observations of an additional 18 faint quasars (3.57<z<4.80, 20.1<i^*<20.8) discovered in the region on the sky that has been imaged twice. Several quasars presented in this paper exhibit interesting properties, including a radio-loud quasar at z=4.77, and a narrow-line quasar (FWHM = 1500 km s^-1) at z=3.57.Comment: AJ accepted (Jan 2001), with minor changes; high-resolution finding charts available at http://www.sns.ias.edu/~fan/papers/q3.p
    • …
    corecore