4,670 research outputs found
Editors’ Notes
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/149556/1/he20319_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149556/2/he20319.pd
Change of nuclear configurations in the neutrinoless double- decay of Te Xe and Xe Ba
The change in the configuration of valence protons between the initial and
final states in the neutrinoless double- decay of Te
Xe and of Xe Ba has been
determined by measuring the cross sections of the (,He) reaction with
101-MeV deuterons. Together with our recent determination of the relevant
neutron configurations involved in the process, a quantitative comparison with
the latest shell-model and interacting-boson-model calculations reveals
significant discrepancies. These are the same calculations used to determine
the nuclear matrix elements governing the rate of neutrinoless double-
decay in these systems.Comment: 10 pages, 4 figures, 9 table
Spatial Current Patterns, Dephasing and Current Imaging in Graphene Nanoribbons
Using the non-equilibrium Keldysh Green's function formalism, we investigate
the local, non-equilibrium charge transport in graphene nanoribbons (GNRs). In
particular, we demonstrate that the spatial current patterns associated with
discrete transmission resonances sensitively depend on the GNRs' geometry,
size, and aspect ratio, the location and number of leads, and the presence of
dephasing. We identify a relation between the spatial form of the current
patterns, and the number of degenerate energy states participating in the
charge transport. Furthermore, we demonstrate a principle of superposition for
the conductance and spatial current patterns in multiple-lead configurations.
We demonstrate that scanning tunneling microscopy (STM) can be employed to
image spatial current paths in GNR with atomic resolution, providing important
insight into the form of local charge transport. Finally, we investigate the
effects of dephasing on the spatial current patterns, and show that with
decreasing dephasing time, the current patterns evolve smoothly from those of a
ballistic quantum network to those of classical resistor network.Comment: 25 pages, 12 figure
Quasielastic 12C(e,e'p) Reaction at High Momentum Transfer
We measured the 12C(e,e'p) cross section as a function of missing energy in
parallel kinematics for (q,w) = (970 MeV/c, 330 MeV) and (990 MeV/c, 475 MeV).
At w=475 MeV, at the maximum of the quasielastic peak, there is a large
continuum (E_m > 50 MeV) cross section extending out to the deepest missing
energy measured, amounting to almost 50% of the measured cross section. The
ratio of data to DWIA calculation is 0.4 for both the p- and s-shells. At w=330
MeV, well below the maximum of the quasielastic peak, the continuum cross
section is much smaller and the ratio of data to DWIA calculation is 0.85 for
the p-shell and 1.0 for the s-shell. We infer that one or more mechanisms that
increase with transform some of the single-nucleon-knockout into
multinucleon knockout, decreasing the valence knockout cross section and
increasing the continuum cross section.Comment: 14 pages, 7 figures, Revtex (multicol, prc and aps styles), to appear
in Phys Rev
Cooperative damping mechanism of the resonance in the nuclear photoabsorption
We propose a resonance damping mechanism to explain the disappearance of the
peaks around the position of the resonances higher than the resonance
in the nuclear photoabsorption. This phenomenon is understood by taking into
account the cooperative effect of the collision broadening of and
, the pion distortion and the interference in the two-pion
photoproduction processes in the nuclear medium.Comment: 11 pages, uses revtex.sty. To appear in Phys. Rev. Let
Planejamento fatorial para extra\ue7\ue3o de enzima fibrinolitica de Mucor subtilissimus UCP1262 mediante sistema de duas fases aquosas (PEG/fosfato)
A factorial design was used to select the best conditions of fibrinolytic protease from Mucor subtilissimus by aqueous two-phase system (PEG/phosphate)
The reaction dynamics of the 16O(e,e'p) cross section at high missing energies
We measured the cross section and response functions (R_L, R_T, and R_LT) for
the 16O(e,e'p) reaction in quasielastic kinematics for missing energies 25 <=
E_miss <= 120 MeV at various missing momenta P_miss <= 340 MeV/c. For 25 <
E_miss < 50 MeV and P_miss \approx 60 MeV/c, the reaction is dominated by
single-nucleon knockout from the 1s1/2-state. At larger P_miss, the
single-particle aspects are increasingly masked by more complicated processes.
For E_miss > 60 MeV and P_miss > 200 MeV/c, the cross section is relatively
constant. Calculations which include contributions from pion exchange currents,
isobar currents and short-range correlations account for the shape and the
transversity but only for half of the magnitude of the measured cross section.Comment: 6 pages, 4 figures, submitted to Phys Rev Lett, formatting error
fixe
- …