4 research outputs found

    Near real-time estimation of water vapour in the troposphere using ground GNSS and the meteorological data

    No full text
    The near real-time (NRT) high resolution water vapour distribution models can be constructed based on GNSS observations delivered from Ground Base Augmentation Systems (GBAS) and ground meteorological data. Since 2008 in the territory of Poland, a GBAS system called ASG-EUPOS (Active Geodetic Network) has been operating. This paper addresses the problems concerning construction of the NRT model of water vapour distribution in the troposphere near Poland. The first section presents all available GNSS and ground meteorological stations in the area of Poland and neighbouring countries. In this section, data feeding scheme is discussed, together with timeline and time resolution. The high consistency between measured and interpolated temperature value is shown, whereas some discrepancy in the pressure is observed. In the second section, the NRT GNSS data processing strategy of ASG-EUPOS network is discussed. Preliminary results show fine alignment of the obtained Zenith Troposphere Delays (ZTDs) with reference data from European Permanent Network (EPN) processing center. The validation of NRT troposphere products against daily solution shows 15 mm standard deviation of obtained ZTD differences. The last section presents the first results of 2-D water vapour distribution above the GNSS network and application of the tomographic model to 3-D distribution of water vapour in the atmosphere. The GNSS tomography model, working on the simulated data from numerical forecast model, shows high consistency with the reference data (by means of standard deviation 4 mm km−1 or 4 ppm), however, noise analysis shows high solution sensitivity to errors in observations. The discrepancy for real data preliminary solution (measured as a mean standard deviation) between reference NWP data and tomography data was on the level of 9 mm km−1 (or 9 ppm) in terms of wet refractivity

    An assessment of the quality of near-real time GNSS observations as a potential data source for meteorology

    No full text
    The Global Navigation Satellite System (GNSS) can be used to determine accurate and high-frequency atmospheric parameters, such as Zenith Total Delay (ZTD) or Precipitable Water Vapour (PW), in all-weather conditions. These parameters are often assimilated into Numerical Weather Prediction (NWP) models and used for nowcasting services and climate studies. The effective usage of the ZTDs obtained from a ground-based GNSS receiver’s network in a NWP could fill the gap of insufficient atmospheric water vapour state information. The supply of such information with a latency acceptable for NWP assimilation schemes requires special measures in the GNSS data processing, quality control and distribution. This study is a detailed description of the joint effort of three institutions – Wrocław University of Environmental and Life Sciences, Wrocław University, and the Institute of Meteorology and Water Management – to provide accurate and timely GNSS-based meteorological information. This paper presents accuracy analyses of near real-time GNSS ZTD validated against reference ZTD data: the International GNSS Service (IGS) from a precise GNSS solution, Weather Research and Forecasting (WRF) model, and radiosonde profiles. Data quality statistics were performed for five GNSS stations in Poland over a time span of almost a year (2015). The comparison of near real-time ZTD and IGS shows a mean ZTD station bias of less than 3 mm with a related standard deviation of less than 10 mm. The bias between near real-time ZTD and WRF ZTD is in the range of 5-11 mm and the overall standard deviation is slightly higher than 10 mm. Finally, the comparison of the investigated ZTD against radiosonde showed an average bias at a level of 10 mm, whereas the standard deviation does not exceed 14 mm. Considering the data quality, we assess that the NRT ZTD can be assimilated into NWP models

    Impact and implementation of higher-order ionospheric effects on precise GNSS applications

    No full text
    High precision Global Navigation Satellite Systems (GNSS) positioning and time transfer require correcting signal delays, in particular higher-order ionospheric (I2+) terms. We present a consolidated model to correct second- and third-order terms, geometric bending and differential STEC bending effects in GNSS data. The model has been implemented in an online service correcting observations from submitted RINEX files for I2+ effects. We performed GNSS data processing with and without including I2+ corrections, in order to investigate the impact of I2+ corrections on GNSS products. We selected three time periods representing different ionospheric conditions. We used GPS and GLONASS observations from a global network and two regional networks in Poland and Brazil. We estimated satellite orbits, satellite clock corrections, Earth rotation parameters, troposphere delays, horizontal gradients, and receiver positions using global GNSS solution, Real-Time Kinematic (RTK), and Precise Point Positioning (PPP) techniques. The satellite-related products captured most of the impact of I2+ corrections, with the magnitude up to 2 cm for clock corrections, 1 cm for the along- and cross-track orbit components, and below 5 mm for the radial component. The impact of I2+ on troposphere products turned out to be insignificant in general. I2+ corrections had limited influence on the performance of ambiguity resolution and the reliability of RTK positioning. Finally, we found that I2+ corrections caused a systematic shift in the coordinate domain that was time- and region-dependent and reached up to -11 mm for the north component of the Brazilian stations during the most active ionospheric conditions.Peer Reviewe
    corecore