163 research outputs found

    Rethinking the Inception Architecture for Computer Vision

    Get PDF
    Convolutional networks are at the core of most stateof-the-art computer vision solutions for a wide variety of tasks. Since 2014 very deep convolutional networks started to become mainstream, yielding substantial gains in various benchmarks. Although increased model size and computational cost tend to translate to immediate quality gains for most tasks (as long as enough labeled data is provided for training), computational efficiency and low parameter count are still enabling factors for various use cases such as mobile vision and big-data scenarios. Here we are exploring ways to scale up networks in ways that aim at utilizing the added computation as efficiently as possible by suitably factorized convolutions and aggressive regularization. We benchmark our methods on the ILSVRC 2012 classification challenge validation set demonstrate substantial gains over the state of the art: 21.2% top-1 and 5.6% top-5 error for single frame evaluation using a network with a computational cost of 5 billion multiply-adds per inference and with using less than 25 million parameters. With an ensemble of 4 models and multi-crop evaluation, we report 3.5% top-5 error and 17.3% top-1 error

    Searching for simplicity: Approaches to the analysis of neurons and behavior

    Full text link
    What fascinates us about animal behavior is its richness and complexity, but understanding behavior and its neural basis requires a simpler description. Traditionally, simplification has been imposed by training animals to engage in a limited set of behaviors, by hand scoring behaviors into discrete classes, or by limiting the sensory experience of the organism. An alternative is to ask whether we can search through the dynamics of natural behaviors to find explicit evidence that these behaviors are simpler than they might have been. We review two mathematical approaches to simplification, dimensionality reduction and the maximum entropy method, and we draw on examples from different levels of biological organization, from the crawling behavior of C. elegans to the control of smooth pursuit eye movements in primates, and from the coding of natural scenes by networks of neurons in the retina to the rules of English spelling. In each case, we argue that the explicit search for simplicity uncovers new and unexpected features of the biological system, and that the evidence for simplification gives us a language with which to phrase new questions for the next generation of experiments. The fact that similar mathematical structures succeed in taming the complexity of very different biological systems hints that there is something more general to be discovered

    A Tutorial on the Proper Orthogonal Decomposition

    Get PDF
    This tutorial introduces the Proper Orthogonal Decomposition (POD) to engineering students and researchers interested in its use in fluid dynamics and aerodynamics. The objectives are firstly to give an intuitive feel for the method and secondly to provide example MATLAB codes of common POD algorithms. The discussion is limited to the finite-dimensional case and only requires knowledge of basic statistics and matrix algebra. The POD is first introduced with a two-dimensional example in order to illustrate the different projections that take place in the decomposition. The n-dimensional case is then developed using experimental data obtained in a turbulent separation-bubble flow and numerical results from simulations of a cylinder wake flow

    Stimulus-dependent maximum entropy models of neural population codes

    Get PDF
    Neural populations encode information about their stimulus in a collective fashion, by joint activity patterns of spiking and silence. A full account of this mapping from stimulus to neural activity is given by the conditional probability distribution over neural codewords given the sensory input. To be able to infer a model for this distribution from large-scale neural recordings, we introduce a stimulus-dependent maximum entropy (SDME) model---a minimal extension of the canonical linear-nonlinear model of a single neuron, to a pairwise-coupled neural population. The model is able to capture the single-cell response properties as well as the correlations in neural spiking due to shared stimulus and due to effective neuron-to-neuron connections. Here we show that in a population of 100 retinal ganglion cells in the salamander retina responding to temporal white-noise stimuli, dependencies between cells play an important encoding role. As a result, the SDME model gives a more accurate account of single cell responses and in particular outperforms uncoupled models in reproducing the distributions of codewords emitted in response to a stimulus. We show how the SDME model, in conjunction with static maximum entropy models of population vocabulary, can be used to estimate information-theoretic quantities like surprise and information transmission in a neural population.Comment: 11 pages, 7 figure

    Pairwise maximum entropy models for studying large biological systems: when they can and when they can't work

    Get PDF
    One of the most critical problems we face in the study of biological systems is building accurate statistical descriptions of them. This problem has been particularly challenging because biological systems typically contain large numbers of interacting elements, which precludes the use of standard brute force approaches. Recently, though, several groups have reported that there may be an alternate strategy. The reports show that reliable statistical models can be built without knowledge of all the interactions in a system; instead, pairwise interactions can suffice. These findings, however, are based on the analysis of small subsystems. Here we ask whether the observations will generalize to systems of realistic size, that is, whether pairwise models will provide reliable descriptions of true biological systems. Our results show that, in most cases, they will not. The reason is that there is a crossover in the predictive power of pairwise models: If the size of the subsystem is below the crossover point, then the results have no predictive power for large systems. If the size is above the crossover point, the results do have predictive power. This work thus provides a general framework for determining the extent to which pairwise models can be used to predict the behavior of whole biological systems. Applied to neural data, the size of most systems studied so far is below the crossover point

    Beyond inverse Ising model: structure of the analytical solution for a class of inverse problems

    Full text link
    I consider the problem of deriving couplings of a statistical model from measured correlations, a task which generalizes the well-known inverse Ising problem. After reminding that such problem can be mapped on the one of expressing the entropy of a system as a function of its corresponding observables, I show the conditions under which this can be done without resorting to iterative algorithms. I find that inverse problems are local (the inverse Fisher information is sparse) whenever the corresponding models have a factorized form, and the entropy can be split in a sum of small cluster contributions. I illustrate these ideas through two examples (the Ising model on a tree and the one-dimensional periodic chain with arbitrary order interaction) and support the results with numerical simulations. The extension of these methods to more general scenarios is finally discussed.Comment: 15 pages, 6 figure

    Effect of coupling asymmetry on mean-field solutions of direct and inverse Sherrington-Kirkpatrick model

    Full text link
    We study how the degree of symmetry in the couplings influences the performance of three mean field methods used for solving the direct and inverse problems for generalized Sherrington-Kirkpatrick models. In this context, the direct problem is predicting the potentially time-varying magnetizations. The three theories include the first and second order Plefka expansions, referred to as naive mean field (nMF) and TAP, respectively, and a mean field theory which is exact for fully asymmetric couplings. We call the last of these simply MF theory. We show that for the direct problem, nMF performs worse than the other two approximations, TAP outperforms MF when the coupling matrix is nearly symmetric, while MF works better when it is strongly asymmetric. For the inverse problem, MF performs better than both TAP and nMF, although an ad hoc adjustment of TAP can make it comparable to MF. For high temperatures the performance of TAP and MF approach each other
    corecore