449 research outputs found

    Poly (N-isopropylacrylamide) Microgel-based Etalons and Etalon Arrays for Determining the Molecular Weight of Polymers in Solution

    Get PDF
    Positively and/or negatively charged poly (N-isopropylacrylamide)-based microgels were deposited on a single substrate and isolated regions of Au overlayers were deposited on top of the microgels. Each spatially isolated Au overlayer region had a different thickness to make an etalon array.We found that areas with a thin Au overlayer (5 nm) responded to a range of polymer molecular weights (MW), while areas with a thick overlayer (35 nm) can only respond to low molecular weight polyelectrolytes. By comparing the optical responses of the device’s individual array elements, a good approximation of the polyelectrolyteMWin solution can be made

    Label-free Detection of Low Protein Concentration in Solution Using a Novel Colorimetric Assay

    Get PDF
    Dual pH and temperature sensitive microgel-based etalons were fabricated by sandwiching a “monolithic” microgel layer between two semitransparent, Au layers. The devices exhibit visual color and multipeak reflectance spectra, both of which primarily depend on the distance between the Au surfaces mediated by the microgel diameter. We found that a polycationic polyelectrolyte can penetrate through the Au overlayer to interact with negatively charged microgel confined between Au overlayers. In this submission we report that biotinylated polycationic polymer can penetrate through the Au overlayer of a poly (N-isopropylacrylamide)-co-acrylic acid (pNIPAm-co-AAc) microgel-based etalon and cause the microgel layer to collapse. The collapse results in a shift in the spectral peaks of the reflectance spectra. We found that the extent of peak shift depends on the amount of biotinylated polycation added to the etalon, which can subsequently be used to determine the concentration of streptavidin in solution at pM concentrations

    A Novel Label-Free Colorimetric Assay for DNA Concentration in Solution

    Get PDF
    Optical devices were fabricated by sandwiching a “monolithic” poly(N-isopropylacrylamide-co-N-(3-aminopropyl) methacrylamide hydrochloride) (pNIPAm-co-APMAH) microgel layer between two semitransparent Au layers. These devices, referred to as etalons, exhibit characteristic multipeak reflectance spectra, and the position of the peaks in the spectra primarily depends on the distance between the Au surfaces mediated by the microgel layer thickness. Here, we show that the positively charged microgel layer can collapse in the presence of negatively charged single stranded DNA (ssDNA) due to ssDNA induced microgel crosslinking. The collapse results in a change in the etalon\u27s optical properties, which can be used to detect target DNA in a complex mixture

    Poly (N-isopropylacrylamide) Microgel-Based Thin Film Actuators for Humidity Sensing

    Get PDF
    In this submission we fabricated a humidity-responsive polymer-based actuator by layering negatively charged poly(N-isopropylacrylamide)-co-acrylic acid microgels and positively charged poly(diallyldimethyl ammonium chloride) on top of a flexible plastic substrate. We show that the extent of the actuation (bending) was dependent on the atmospheric humidity. This property was used to detect atmospheric humidity by hanging weights from the actuator, which were rested on the pan of a top loading balance. This was done in such a way that the amount of the mass resting on the balance depended on the extent of actuator bending, which could then be related to humidity. We found the mass read by the balance to be linearly dependent on the atmospheric humidity in the range of 0–50% humidity, and the devices could be used to detect 0.02% humidity changes. These experiments show that the actuation of the devices can be used for sensing applications, in this case humidity, but will be used in the future to detect various atmospheric gases and other vapors

    Validation of the CAchexia SCOre (CASCO). Staging cancer patients: The use of miniCASCO as a simplified tool

    Get PDF
    The CAchexia SCOre (CASCO) was described as a tool for the staging of cachectic cancer patients. The aim of this study is to show the metric properties of CASCO in order to classify cachectic cancer patients into three different groups, which are associated with a numerical scoring. The final aim was to clinically validate CASCO for its use in the classification of cachectic cancer patients in clinical practice. We carried out a case -control study that enrolled prospectively 186 cancer patients and 95 age-matched controls. The score includes five components: (1) body weight loss and composition, (2) inflammation/metabolic disturbances/immunosuppression, (3) physical performance, (4) anorexia, and (5) quality of life. The present study provides clinical validation for the use of the score. In order to show the metric properties of CASCO, three different groups of cachectic cancer patients were established according to the results obtained with the statistical approach used: mild cachexia (15 â\u89¤ Ã\u97 â\u89¤ 28), moderate cachexia (29 â\u89¤ Ã\u97 â\u89¤ 46), and severe cachexia (47 â\u89¤ Ã\u97 â\u89¤ 100). In addition, a simplified version of CASCO, MiniCASCO (MCASCO), was also presented and it contributes as a valid and easy-to-use tool for cachexia staging. Significant statistically correlations were found between CASCO and other validated indexes such as Eastern Cooperative Oncology Group (ECOG) and the subjective diagnosis of cachexia by specialized oncologists. A very significant estimated correlation between CASCO and MCASCO was found that suggests that MCASCO might constitute an easy and valid tool for the staging of the cachectic cancer patients. CASCO and MCASCO provide a new tool for the quantitative staging of cachectic cancer patients with a clear advantage over previous classifications

    Poly (N-isopropylacrylamide) Microgel-Based Optical Devices for Sensing and Biosensing

    Get PDF
    Responsive polymer-based materials have found numerous applications due to their ease of synthesis and the variety of stimuli that they can be made responsive to. In this review, we highlight the group’s efforts utilizing thermoresponsive poly (N-isopropylacrylamide) (pNIPAm) microgel-based optical devices for various sensing and biosensing applications

    \u3cem\u3eBromus tectorum\u3c/em\u3e Litter Alters Photosynthetic Characteristics of Biological Soil Crusts from a Semiarid Shrubland

    Get PDF
    Invasion by the exotic annual grass Bromus tectorum has increased the cover and connectivity of fine litter in the sagebrush steppes of western North America. This litter tends to cover biological soil crusts, which could affect their metabolism and growth. To investigate this possible phenomenon, biological soil crusts dominated by either the moss Bryum argenteum or the lichen Diploschistes muscorum were covered with B.tectorum litter (litter treatment) or left uncovered (control treatment) and exposed to natural field conditions. After periods of five and ten months, we removed the litter and compared the photosynthetic performance of biological soil crusts from the two treatments. Litter induced photosynthetic changes in our samples. In bothB. argenteum and D. muscorum, biological soil crusts that had been covered with litter for ten months had lower rates of gross photosynthesis and lower chlorophyll content than control samples. Similarly in both biological soil crust types, litter reduced the rate of dark respiration. For D. muscorum, the reduction in dark respiration fully compensated for the decrease in gross photosynthesis, resulting in similar values of net photosynthesis in the two treatments. In contrast, for B. argenteum, net photosynthesis was four-times greater in the control than the litter treatment. Also under litter cover, D. muscorum showed three common adaptations to shade conditions: a decrease in the light compensation point, in the light intensity needed to achieve 95% of maximal net photosynthesis, and in the chlorophyll a/b ratio. None of these changes was apparent in B. argenteum. Overall, our results indicate that photosynthetic responses to the presence of litter varied among species of the crust biota and that the litter can reduce the photosynthetic capacity of biological soil crusts. These results help to explain field observations of decreases in biological soil crust cover and changes in biological soil crust composition with increases in litter cover, and suggest that the landscape-wide invasion by B. tectorum may have substantial effects on biological soil crust performance and therefore their capacity to function in semiarid shrublands

    Responsive Polymers for Biosensing and Protein Delivery

    Get PDF
    In this feature article, we review some of the most recent advances in the field of materials chemistry for biosensing, disease diagnostics, and drug delivery. Our recent work on the development of responsive polymer-based platforms for biosensing and drug delivery will also be highlighted. This feature article is meant to outline the breadth of the utility of polymer-based materials for select applications, as well as their enormous potential impact on future technologies

    Isolation of RNA from a Mixture and its Detection by Utilizing a Microgel-Based Optical Device

    Get PDF
    In this investigation, we show that RNA can be separated from a solution containing DNA and RNA and the isolated RNA can be detected using poly (N-isopropylacrylamide-co-N-(3-aminopropyl) methacrylamide hydrochloride) microgel-based optical devices (etalons). The isolation of RNA was accomplished by using hairpin-functionalized magnetic beads (MMPDNA) and differential melting, based on the fact that the DNA–RNA hybrid duplex is stronger (i.e., high melting temperature) than the DNA–DNA duplex (i.e., low melting temperature). By performing concurrent etalon sensing and fluorescent studies, we found that the MMPDNA combined with differential melting was capable of selectively separating RNA from DNA. This selective separation and simple colorimetric detection of RNA from a mixture will help lead to future RNA-based disease diagnostic devices

    Light Switchable Optical Materials from Azobenzene Crosslinked Poly (N-Isopropylacrylamide)-Based Microgels

    Get PDF
    4,4′-Di(acrylamido)-azobenzene was used as a crosslinker in poly(N-isopropylacrylamide)-based microgels. The microgels were subsequently used to fabricate microgel-based optical materials (etalons), which exhibited optical properties that were switchable upon exposure to UV irradiation. We also show that the extent of the response depended on the UV exposure time. These materials could find applications for controlled/triggered drug delivery, as well as in various optical applications
    corecore