1,374 research outputs found

    Quantum Zeno effect with a superconducting qubit

    Full text link
    Detailed schemes are investigated for experimental verification of Quantum Zeno effect with a superconducting qubit. A superconducting qubit is affected by a dephasing noise whose spectrum is 1/f, and so the decay process of a superconducting qubit shows a naturally non-exponential behavior due to an infinite correlation time of 1/f noise. Since projective measurements can easily influence the decay dynamics having such non-exponential feature, a superconducting qubit is a promising system to observe Quantum Zeno effect. We have studied how a sequence of projective measurements can change the dephasing process and also we have suggested experimental ways to observe Quantum Zeno effect with a superconducting qubit. It would be possible to demonstrate our prediction in the current technology

    A superconducting qubit as a quantum transformer routing entanglement between a microscopic quantum memory and a macroscopic resonator

    Full text link
    We demonstrate experimentally the creation and measurement of an entangled state between a microscopic two level system and a macroscopic superconducting resonator where their indirect interaction is mediated by an artificial atom, a superconducting persistent current qubit (PCQB). We show that the microscopic two level system, formed by a defect in an oxide layer, exhibits an order of magnitude longer dephasing time than the PCQB, while the dephasing time of the entangled states between the microscopic two level system and macroscopic superconducting resonator is significantly longer than the dephasing time in the persistent current qubits. This demonstrates the possibility that a qubit of moderate coherence properties can be used in practice to address low decoherence quantum memories by connecting them to macroscopic circuit QED quantum buses, leading future important implications for quantum information processing tasks.Comment: 4 figure

    Detection of a persistent-current qubit by resonant activation

    Full text link
    We present the implementation of a new scheme to detect the quantum state of a persistent-current qubit. It relies on the dependency of the measuring Superconducting Quantum Interference Device (SQUID) plasma frequency on the qubit state, which we detect by resonant activation. With a measurement pulse of only 5ns, we observed Rabi oscillations with high visibility (65%).Comment: 4 pages, 4 figures, submitted to PRB Rapid Co

    Dephasing of a superconducting qubit induced by photon noise

    Full text link
    We have studied the dephasing of a superconducting flux-qubit coupled to a DC-SQUID based oscillator. By varying the bias conditions of both circuits we were able to tune their effective coupling strength. This allowed us to measure the effect of such a controllable and well-characterized environment on the qubit coherence. We can quantitatively account for our data with a simple model in which thermal fluctuations of the photon number in the oscillator are the limiting factor. In particular, we observe a strong reduction of the dephasing rate whenever the coupling is tuned to zero. At the optimal point we find a large spin-echo decay time of 4μs4 \mu s.Comment: New version of earlier paper arXiv/0507290 after in-depth rewritin

    Relaxation and Dephasing in a Flux-qubit

    Full text link
    We report detailed measurements of the relaxation and dephasing time in a flux-qubit measured by a switching DC SQUID. We studied their dependence on the two important circuit bias parameters: the externally applied magnetic flux and the bias current through the SQUID in two samples. We demonstrate two complementary strategies to protect the qubit from these decoherence sources. One consists in biasing the qubit so that its resonance frequency is stationary with respect to the control parameters ({\it optimal point}) ; the second consists in {\it decoupling} the qubit from current noise by chosing a proper bias current through the SQUID. At the decoupled optimal point, we measured long spin-echo decay times of up to 4μs4 \mu s.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Letter

    Western blot analysis of chloroplast, embryoplast and cytoplasm using sucrose synthase antibodies [abstract]

    Get PDF
    Abstract only availablePlastids are functionally and structurally diverse organelles and include chloroplasts (found in leaves), leucoplasts (roots), chromoplasts (flower petals), and amyloplasts (tubers). Plant embryos also contain plastids and those present in oilseeds such as rapeseed (Brassica napus) have properties of both chloroplasts and leucoplasts, and are therefore termed embryoplasts. After isolation of plastids from developing embryos of oilseed rape (Brassica napus cv. Reston), embryoplast proteins were identified by liquid chromatography-mass spectrometry. One of the proteins identified was sucrose synthase, a sucrose cleaving enzyme principally located in the cytosol. To confirm that sucrose synthase is associated with isolated embryoplasts, we performed western blots on the protein using four different sucrose synthase antibodies. The western blot results will be presented
    corecore