30 research outputs found

    Performance analysis for multi-way relaying in rician fading channels

    Get PDF
    In this paper, the multi-way relaying scenario is considered with M users who want to exchange their information with each other with the help of N relays (N ≫ M) among them. There are no direct transmission channels between any two users. Particularly, all users transmit their signals to all relays in the first time slot and M - 1 relays are selected later to broadcast their mixture signals during the following M - 1 time slots to all users. Compared to the transmission with the help of single relay, the multi-way relaying scenario reduces the transmit time significantly from 2M to M time slots. Random and semiorthogonal relays selections are applied. Rician fading channels are considered between the users and relays, and analytical expressions for the outage probability and ergodic sum rate for the proposed relaying protocol are developed by first characterizing the statistical property of the effective channel gain based on random relays selection. Also, the approximation of ergodic sum rate at high signal-to-noise ratio regime is derived. In addition, the diversity order of the system is investigated for both random and semiorthogonal relay selections. Meanwhile, it is shown that when the relays are randomly separated into L groups of M - 1 relays, the group with maximum average channel gain can achieve the diversity order L, which will increase when more relays considered in the scheme. Furthermore, when semiorthogonal selection (SS) algorithm is applied to select the relays with semiorthogonal channels, it is shown that the system will guarantee that all the users can decode the others information successfully. Moreover, the maximum of channel gain after semiorthogonal relays selection is investigated by using extreme value theory, and tight lower and upper bounds are derived. Simulation results demonstrate that the derived expressions are accurate

    Performance Analysis of Millimeter Wave Cloud Radio Access Networks

    No full text

    A New Restricted Full-Rank Single-Symbol Decodable Design for Four Transmit Antennas

    No full text
    Recently, a single-symbol decodable transmit strategy based on preprocessing at the transmitter has been introduced to decouple the quasi-orthogonal space-time block codes (QOSTBC) with reduced complexity at the receiver. Unfortunately, it does not achieve full diversity, thus suffering from significant performance loss. To tackle this problem, we propose a full diversity scheme with four transmit antennas in this letter. The proposed code is based on a class of restricted full-rank single-symbol decodable design (RFSDD) and has many similar characteristics as the coordinate interleaved orthogonal designs (CIODs), but with a lower peak-to-average ratio (PAR)

    Joint complex diversity coding and channel coding over space, time and frequency

    No full text
    This study provides a general diversity analysis for joint complex diversity coding (CDC) and channel coding-based space-time-frequency codeing is provided. The mapping designs from channel coding to CDC are crucial for efficient exploitation of the diversity potential. This study provides and proves a sufficient condition of full diversity construction with joint three-dimensional CDC and channel coding, bit-interleaved coded complex diversity coding and symbol-interleaved coded complex diversity coding. Both non-iterative and iterative detections of joint channel code and CDC transmission are investigated. The proposed minimum mean-square error-based iterative soft decoding achieves the performance of the soft sphere decoding with reduced complexity

    Improved Design of Two and Four-group Decodable STBCs with Larger Diversity Product for Eight Transmit Antennas

    Get PDF
    Recently, full rate and full diversity two-group (2 Gp) and four-group (4 Gp) decodable space-time block codes (STBC) derived from quasi-orthogonal STBC (QSTBC) and designed under diversity product maximization criterion have been proposed. In this paper, we derive an upper bound of diversity product for those STBCs and discover that the diversity product of the current 2 Gp-QSTBC and 4 Gp-QSTBC has the potential to approach the upper bound for 8 transmit antennas. To this end, we propose an improved design of 2 Gp and 4 Gp STBC with increased diversity product for 8 transmit antennas by allowing sufficient number of dimensions for constellation rotation. The diversity product of the proposed two-group decodable STBC achieves the derived upper bound
    corecore