1 research outputs found
Creation and Growth of Components in a Random Hypergraph Process
Denote by an -component a connected -uniform hypergraph with
edges and vertices. We prove that the expected number of
creations of -component during a random hypergraph process tends to 1 as
and tend to with the total number of vertices such that
. Under the same conditions, we also show that
the expected number of vertices that ever belong to an -component is
approximately . As an immediate
consequence, it follows that with high probability the largest -component
during the process is of size . Our results
give insight about the size of giant components inside the phase transition of
random hypergraphs.Comment: R\'{e}sum\'{e} \'{e}tend