332 research outputs found

    Resonant Elastic Soft X-Ray Scattering

    Full text link
    Resonant (elastic) soft x-ray scattering (RSXS) offers a unique element, site, and valence specific probe to study spatial modulations of charge, spin, and orbital degrees of freedom in solids on the nanoscopic length scale. It cannot only be used to investigate single crystalline materials. This method also enables to examine electronic ordering phenomena in thin films and to zoom into electronic properties emerging at buried interfaces in artificial heterostructures. During the last 20 years, this technique, which combines x-ray scattering with x-ray absorption spectroscopy, has developed into a powerful probe to study electronic ordering phenomena in complex materials and furthermore delivers important information on the electronic structure of condensed matter. This review provides an introduction to the technique, covers the progress in experimental equipment, and gives a survey on recent RSXS studies of ordering in correlated electron systems and at interfaces

    Magnetic domain fluctuations in an antiferromagnetic film observed with coherent resonant soft x-ray scattering

    Full text link
    We report the direct observation of slow fluctuations of helical antiferromagnetic domains in an ultra-thin holmium film using coherent resonant magnetic x-ray scattering. We observe a gradual increase of the fluctuations in the speckle pattern with increasing temperature, while at the same time a static contribution to the speckle pattern remains. This finding indicates that domain-wall fluctuations occur over a large range of time scales. We ascribe this non-ergodic behavior to the strong dependence of the fluctuation rate on the local thickness of the film.Comment: to appear in Phys. Rev. Let

    Observation of Devil's Staircase in the Novel Spin Valve System SrCo6_6O11_{11}

    Get PDF
    Using resonant soft x-ray scattering as a function of both temperature and magnetic field, we reveal a large number of almost degenerate magnetic orders in SrCo6O11. The Ising-like spins in this frustrated material in fact exhibit a so-called magnetic devil's staircase. It is demonstrated how a magnetic field induces transitions between different microscopic spin configurations, which is responsible for the magnetoresistance of SrCo6O11. This material therefore constitutes a unique combination of a magnetic devil's staircase and spin valve effects, yielding a novel type of magnetoresistance system.Comment: 5 pages, 5 figure

    A Comparison of Stripe Modulations in La1.875_{1.875}Ba0.125_{0.125}CuO4_4 and La1.48_{1.48}Nd0.4_{0.4}Sr0.12_{0.12}CuO4_4

    Full text link
    We report combined soft and hard x-ray scattering studies of the electronic and lattice modulations associated with stripe order in La1.875_{1.875}Ba0.125_{0.125}CuO4_4 and La1.48_{1.48}Nd0.4_{0.4}Sr0.12_{0.12}CuO4_4. We find that the amplitude of both the electronic modulation of the hole density and the strain modulation of the lattice is significantly larger in La1.875_{1.875}Ba0.125_{0.125}CuO4_4 than in La1.48_{1.48}Nd0.4_{0.4}Sr0.12_{0.12}CuO4_4 and is also better correlated. The in-plane correlation lengths are isotropic in each case; for La1.875_{1.875}Ba0.125_{0.125}CuO4_4, ξhole=255±5\xi^{hole}=255\pm 5 \AA\ whereas for La1.48_{1.48}Nd0.4_{0.4}Sr0.12_{0.12}CuO4_4F, ξhole=111±7\xi^{hole}=111\pm 7 \AA. We find that the modulations are temperature independent in La1.875_{1.875}Ba0.125_{0.125}CuO4_4 in the low temperature tetragonal phase. In contrast, in La1.48_{1.48}Nd0.4_{0.4}Sr0.12_{0.12}CuO4_4, the amplitude grows smoothly from zero, beginning 13 K below the LTT phase transition. We speculate that the reduced average tilt angle in La1.875_{1.875}Ba0.125_{0.125}CuO4_4 results in reduced charge localization and incoherent pinning, leading to the longer correlation length and enhanced periodic modulation amplitude.Comment: 6 pages, 4 figure

    Electronic structure, magnetic and dielectric properties of the edge-sharing copper-oxide chain compound NaCu2_{2}O2_{2}

    Full text link
    We report an experimental study of \nco, a Mott insulator containing chains of edge-sharing CuO4_4 plaquettes, by polarized x-ray absorption spectroscopy (XAS), resonant magnetic x-ray scattering (RMXS), magnetic susceptibility, and pyroelectric current measurements. The XAS data show that the valence holes reside exclusively on the Cu2+^{2+} sites within the copper-oxide spin chains and populate a dd-orbital polarized within the CuO4_4 plaquettes. The RMXS measurements confirm the presence of incommensurate magnetic order below a N\'eel temperature of TN=11.5T_N = 11.5 K, which was previously inferred from neutron powder diffraction and nuclear magnetic resonance data. In conjunction with the magnetic susceptibility and XAS data, they also demonstrate a new "orbital" selection rule for RMXS that is of general relevance for magnetic structure determinations by this technique. Dielectric property measurements reveal the absence of significant ferroelectric polarization below TNT_N, which is in striking contrast to corresponding observations on the isostructural compound \lco. The results are discussed in the context of current theories of multiferroicity.Comment: 7 pages, 7 figure

    Stripe order of La1.64Eu0.2Sr0.16CuO4 in magnetic fields studied by resonant soft x ray scattering

    Get PDF
    We present results on the magnetic field dependence of the stripe order in La1.64Eu0.2Sr0.16CuO4 LESCO . Using resonant soft x ray scattering at the oxygen K edge to probe the 0.259,0,0.648 superlattice reflection, which is commonly associated to charge stripes, we found no pronounced difference in the wave vector, peak widths, and integrated intensity for magnetic fields up to B 6 T. This is in strong contrast to the behavior observed for La1.875Sr0.125CuO4, where a stabilization of the charge modulation in high magnetic fields has been demonstrate

    Intrinsic and extrinsic x-ray absorption effects in soft x-ray diffraction from the superstructure in magnetite

    Full text link
    We studied the (001/2) diffraction peak in the low-temperature phase of magnetite (Fe3O4) using resonant soft x-ray diffraction (RSXD) at the Fe-L2,3 and O-K resonance. We studied both molecular-beam-epitaxy (MBE) grown thin films and in-situ cleaved single crystals. From the comparison we have been able to determine quantitatively the contribution of intrinsic absorption effects, thereby arriving at a consistent result for the (001/2) diffraction peak spectrum. Our data also allow for the identification of extrinsic effects, e.g. for a detailed modeling of the spectra in case a "dead" surface layer is present that is only absorbing photons but does not contribute to the scattering signal.Comment: to appear in Phys. Rev.

    Momentum-dependent charge correlations in YBa2_2Cu3_3O6+δ_{6+\delta} superconductors probed by resonant x-ray scattering: Evidence for three competing phases

    Full text link
    We have used resonant x-ray scattering to determine the momentum dependent charge correlations in YBa2_2Cu3_3O6.55_{6.55} samples with highly ordered chain arrays of oxygen acceptors (ortho-II structure). The results reveal nearly critical, biaxial charge density wave (CDW) correlations at in-plane wave vectors (0.315, 0) and (0, 0.325). The corresponding scattering intensity exhibits a strong uniaxial anisotropy. The CDW amplitude and correlation length are enhanced as superconductivity is weakened by an external magnetic field. Analogous experiments were carried out on a YBa2_2Cu3_3O6.6_{6.6} crystal with a dilute concentration of spinless (Zn) impurities, which had earlier been shown to nucleate incommensurate magnetic order. Compared to pristine crystals with the same doping level, the CDW amplitude and correlation length were found to be strongly reduced. These results indicate a three-phase competition between spin-modulated, charge-modulated, and superconducting states in underdoped YBa2_2Cu3_3O6+δ_{6+\delta}.Comment: 6 pages, 3 figures revised version, to appear in Phys. Rev. Let
    • …
    corecore