25 research outputs found

    Systematic Evaluation of the Prognostic Impact and Intratumour Heterogeneity of Clear Cell Renal Cell Carcinoma Biomarkers

    Get PDF
    AbstractBackgroundCandidate biomarkers have been identified for clear cell renal cell carcinoma (ccRCC) patients, but most have not been validated.ObjectiveTo validate published ccRCC prognostic biomarkers in an independent patient cohort and to assess intratumour heterogeneity (ITH) of the most promising markers to guide biomarker optimisation.Design, setting, and participantsCancer-specific survival (CSS) for each of 28 identified genetic or transcriptomic biomarkers was assessed in 350 ccRCC patients. ITH was interrogated in a multiregion biopsy data set of 10 ccRCCs.Outcome measurements and statistical analysisBiomarker association with CSS was analysed by univariate and multivariate analyses.Results and limitationsA total of 17 of 28 biomarkers (TP53 mutations; amplifications of chromosomes 8q, 12, 20q11.21q13.32, and 20 and deletions of 4p, 9p, 9p21.3p24.1, and 22q; low EDNRB and TSPAN7 expression and six gene expression signatures) were validated as predictors of poor CSS in univariate analysis. Tumour stage and the ccB expression signature were the only independent predictors in multivariate analysis. ITH of the ccB signature was identified in 8 of 10 tumours. Several genetic alterations that were significant in univariate analysis were enriched, and chromosomal instability indices were increased in samples expressing the ccB signature. The study may be underpowered to validate low-prevalence biomarkers.ConclusionsThe ccB signature was the only independent prognostic biomarker. Enrichment of multiple poor prognosis genetic alterations in ccB samples indicated that several events may be required to establish this aggressive phenotype, catalysed in some tumours by chromosomal instability. Multiregion assessment may improve the precision of this biomarker.Patient summaryWe evaluated the ability of published biomarkers to predict the survival of patients with clear cell kidney cancer in an independent patient cohort. Only one molecular test adds prognostic information to routine clinical assessments. This marker showed good and poor prognosis results within most individual cancers. Future biomarkers need to consider variation within tumours to improve accuracy

    Renal cell carcinoma primary cultures maintain genomic and phenotypic profile of parental tumor tissues

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Clear cell renal cell carcinoma (ccRCC) is characterized by recurrent copy number alterations (CNAs) and loss of heterozygosity (LOH), which may have potential diagnostic and prognostic applications. Here, we explored whether ccRCC primary cultures, established from surgical tumor specimens, maintain the DNA profile of parental tumor tissues allowing a more confident CNAs and LOH discrimination with respect to the original tissues.</p> <p>Methods</p> <p>We established a collection of 9 phenotypically well-characterized ccRCC primary cell cultures. Using the Affymetrix SNP array technology, we performed the genome-wide copy number (CN) profiling of both cultures and corresponding tumor tissues. Global concordance for each culture/tissue pair was assayed evaluating the correlations between whole-genome CN profiles and SNP allelic calls. CN analysis was performed using the two CNAG v3.0 and Partek software, and comparing results returned by two different algorithms (Hidden Markov Model and Genomic Segmentation).</p> <p>Results</p> <p>A very good overlap between the CNAs of each culture and corresponding tissue was observed. The finding, reinforced by high whole-genome CN correlations and SNP call concordances, provided evidence that each culture was derived from its corresponding tissue and maintained the genomic alterations of parental tumor. In addition, primary culture DNA profile remained stable for at least 3 weeks, till to third passage. These cultures showed a greater cell homogeneity and enrichment in tumor component than original tissues, thus enabling a better discrimination of CNAs and LOH. Especially for hemizygous deletions, primary cultures presented more evident CN losses, typically accompanied by LOH; differently, in original tissues the intensity of these deletions was weaken by normal cell contamination and LOH calls were missed.</p> <p>Conclusions</p> <p>ccRCC primary cultures are a reliable <it>in vitro </it>model, well-reproducing original tumor genetics and phenotype, potentially useful for future functional approaches aimed to study genes or pathways involved in ccRCC etiopathogenesis and to identify novel clinical markers or therapeutic targets. Moreover, SNP array technology proved to be a powerful tool to better define the cell composition and homogeneity of RCC primary cultures.</p
    corecore