9,539 research outputs found

    A preliminary case study of the effect of shoe-wearing on the biomechanics of a horse’s foot

    Get PDF
    Horse racing is a multi-billion-dollar industry that has raised welfare concerns due to injured and euthanized animals. Whilst the cause of musculoskeletal injuries that lead to horse morbidity and mortality is multifactorial, pre-existing pathologies, increased speeds and substrate of the racecourse are likely contributors to foot disease. Horse hooves have the ability to naturally deform during locomotion and dissipate locomotor stresses, yet farriery approaches are utilised to increase performance and protect hooves from wear. Previous studies have assessed the effect of different shoe designs on locomotor performance; however, no biomechanical study has hitherto measured the effect of horseshoes on the stresses of the foot skeleton in vivo. This preliminary study introduces a novel methodology combining three-dimensional data from biplanar radiography with inverse dynamics methods and finite element analysis (FEA) to evaluate the effect of a stainless steel shoe on the function of a Thoroughbred horse's forefoot during walking. Our preliminary results suggest that the stainless steel shoe shifts craniocaudal, mediolateral and vertical GRFs at mid-stance. We document a similar pattern of flexion-extension in the PIP (pastern) and DIP (coffin) joints between the unshod and shod conditions, with slight variation in rotation angles throughout the stance phase. For both conditions, the PIP and DIP joints begin in a flexed posture and extend over the entire stance phase. At mid-stance, small differences in joint angle are observed in the PIP joint, with the shod condition being more extended than the unshod horse, whereas the DIP joint is extended more in the unshod than the shod condition. We also document that the DIP joint extends more than the PIP after midstance and until the end of the stance in both conditions. Our FEA analysis, conducted solely on the bones, shows increased von Mises and Maximum principal stresses on the forefoot phalanges in the shod condition at mid-stance, consistent with the tentative conclusion that a steel shoe might increase mechanical loading. However, because of our limited sample size none of these apparent differences have been tested for statistical significance. Our preliminary study illustrates how the shoe may influence the dynamics and mechanics of a Thoroughbred horse's forefoot during slow walking, but more research is needed to quantify the effect of the shoe on the equine forefoot during the whole stance phase, at faster speeds/gaits and with more individuals as well as with a similar focus on the hind feet. We anticipate that our preliminary analysis using advanced methodological approaches will pave the way for new directions in research on the form/function relationship of the equine foot, with the ultimate goal to minimise foot injuries and improve animal health and welfare

    Four Stokes parameter radio frequency polarimetry of a flare from AD Leonis

    Get PDF
    Observations of the four Stokes parameters of a 430 MHz flare from the UV Ceti-type star AD Leonis are presented. The maximum amplitude of the event was 0.52 flux units and the durations at one-half and one-tenth maximum were 12 and 40 seconds, respectively. The degree of circular polarization at maximum intensity was approximately 56 percent and was later observed to be as high as 92 percent. Linear polarization was also observed at a level of about 21 percent at flare maximum which allowed an upper limit of 440 radians - sq m to be placed on the rotation measure

    Musculoskeletal modelling of an ostrich (Struthio camelus) pelvic limb: influence of limb orientation on muscular capacity during locomotion

    Get PDF
    We developed a three-dimensional, biomechanical computer model of the 36 major pelvic limb muscle groups in an ostrich (Struthio camelus) to investigate muscle function in this, the largest of extant birds and model organism for many studies of locomotor mechanics, body size, anatomy and evolution. Combined with experimental data, we use this model to test two main hypotheses. We first query whether ostriches use limb orientations (joint angles) that optimize the moment-generating capacities of their muscles during walking or running. Next, we test whether ostriches use limb orientations at mid-stance that keep their extensor muscles near maximal, and flexor muscles near minimal, moment arms. Our two hypotheses relate to the control priorities that a large bipedal animal might evolve under biomechanical constraints to achieve more effective static weight support. We find that ostriches do not use limb orientations to optimize the moment-generating capacities or moment arms of their muscles. We infer that dynamic properties of muscles or tendons might be better candidates for locomotor optimization. Regardless, general principles explaining why species choose particular joint orientations during locomotion are lacking, raising the question of whether such general principles exist or if clades evolve different patterns (e.g., weighting of muscle force–length or force–velocity properties in selecting postures). This leaves theoretical studies of muscle moment arms estimated for extinct animals at an impasse until studies of extant taxa answer these questions. Finally, we compare our model’s results against those of two prior studies of ostrich limb muscle moment arms, finding general agreement for many muscles. Some flexor and extensor muscles exhibit self-stabilization patterns (posture-dependent switches between flexor/extensor action) that ostriches may use to coordinate their locomotion. However, some conspicuous areas of disagreement in our results illustrate some cautionary principles. Importantly, tendon-travel empirical measurements of muscle moment arms must be carefully designed to preserve 3D muscle geometry lest their accuracy suffer relative to that of anatomically realistic models. The dearth of accurate experimental measurements of 3D moment arms of muscles in birds leaves uncertainty regarding the relative accuracy of different modelling or experimental datasets such as in ostriches. Our model, however, provides a comprehensive set of 3D estimates of muscle actions in ostriches for the first time, emphasizing that avian limb mechanics are highly three-dimensional and complex, and how no muscles act purely in the sagittal plane. A comparative synthesis of experiments and models such as ours could provide powerful synthesis into how anatomy, mechanics and control interact during locomotion and how these interactions evolve. Such a framework could remove obstacles impeding the analysis of muscle function in extinct taxa

    Application of bifurcation methods for the prediction of low-speed aircraft ground performance

    Get PDF
    The design of aircraft for ground maneuvers is an essential part in satisfying the demanding requirements of the aircraft operators. Extensive analysis is done to ensure that a new civil aircraft type will adhere to these requirements, for which the nonlinear nature of the problem generally adds to the complexity of such calculations. Small perturbations in velocity, steering angle, or brake application may lead to significant differences in the final turn widths that can be achieved. Here, the U-turn maneuver is analyzed in detail, with a comparison between the two ways in which this maneuver is conducted. A comparison is also made between existing turn-width prediction methods that consist mainly of geometric methods and simulations and a proposed new method that uses dynamical systems theory. Some assumptions are made with regard to the transient behavior, for which it is shown that these assumptions are conservative when an upper bound is chosen for the transient distance. Furthermore, we demonstrate that the results from the dynamical systems analysis are sufficiently close to the results from simulations to be used as a valuable design tool. Overall, dynamical systems methods provide an order-of-magnitude increase in analysis speed and capability for the prediction of turn widths on the ground when compared with simulations. Nomenclature co = oleo damping coefficient, N s2 =m2 cz = tire vertical damping coefficient Fco = damping force in oleo due to the orifice,

    On the connection between gamma and radio radiation spectra in pulsars

    Full text link
    The model of pulsar radio emission is discussed in which a coherent radio emis-sion is excited in a vacuum gap above polar cap of neutron star. Pulsar X and gamma radiation are considered as the result of low-frequency radio emission inverse Comp-ton scattering on ultra relativistic electrons accelerated in the gap. The influence of the pulsar magnetic field on Compton scattering is taken into account. The relation of radio and gamma radiation spectra has been found in the framework of the model.Comment: 15 pages, 3 figures, Russian version accepted to JETP, partly published in JETP Letters, Vol. 85, #6 (2007

    Tackling Health Inequalities in Scotland: an Innovative Approach to Implement the ‘Early Years’ Policy into Practice

    Get PDF
    Major health inequalities existing across the world and are often closely linked with degrees of social disadvantage. Scotland is fully committed to tackling this major challenge of health and social inequalities. One key focus is ensuring that every child and young person has equal access to opportunities and health improvements. This is supported by a series of national guidelines and ‘early years’ policy drivers. To implement these policies in practice, one National Health Service (NHS) health board (Lanarkshire) in collaboration with the University of the West of Scotland (UWS), adopted an innovative approach to develop the Best Possible Start (BPS) program of focused activity to reshape ‘early years’ services and ways of working. The foundation for the program was the national transformational initiative ‘Getting it right for every child (GIRFEC)’. This is based on the belief that the developments of the child and their experiences in the early years have a major impact on the child’s future life chances. The early nurturing environment is seen crucial in influencing emotional attachment. The BPS program focused on reshaping and streamlining the related health services in the early years between preconception and early school years. This is incorporated in the universal pathway of care encompassing all ‘early years’ services and related professionals. This universal pathway of care is underpinned with evidence based practice, workforce development, building research capacity and influencing leadership in the workplace. This paper presents a detailed overview of the BPS program including the structure, strategic aims and the rationale underpinning the pathway of care

    Influencing Leadership and Building Research Capacity through the Implementation of Health Policy into Practice

    Get PDF
    Leadership in nursing and midwifery is a cornerstone to guide and support teams in the dynamic and rapidly changing health environment. Developing research capacity in health is also a key factor to produce and implement a sound evidence base for practice. Internationally, building health service research capacity is a recognized essential factor to influence and inform policy and practice. This includes developing research capacity across the range of individuals and teams, organisations and networks. This paper describes how one NHS Health Board in Scotland promoted a supportive environment and activities to develop leadership and increase research capacity to support implementation of national Early Years policies into practice
    • …
    corecore