26,392 research outputs found
ISM composition through X-ray spectroscopy of LMXBs
The diffuse interstellar medium (ISM) is an integral part of the evolution of
the entire Galaxy. Metals are produced by stars and their abundances are the
direct testimony of the history of stellar evolution. However, the interstellar
dust composition is not well known and the total abundances are yet to be
accurately determined. We probe ISM dust composition, total abundances, and
abundance gradients through the study of interstellar absorption features in
the high-resolution X-ray spectra of Galactic low-mass X-ray binaries (LMXBs).
We use high-quality grating spectra of nine LMXBs taken with XMM-Newton. We
measure the column densities of O, Ne, Mg, and Fe with an empirical model and
estimate the Galactic abundance gradients. The column densities of the neutral
gas species are in agreement with those found in the literature. Solids are a
significant reservoir of metals like oxygen and iron. Respectively, 15-25 % and
65-90 % of the total amount of O I and Fe I is found in dust. The dust amount
and mixture seem to be consistent along all the lines-of-sight (LOS). Our
estimates of abundance gradients and predictions of local interstellar
abundances are in agreement with those measured at longer wavelengths. Our work
shows that X-ray spectroscopy is a very powerful method to probe the ISM. For
instance, on a large scale the ISM appears to be chemically homogeneous showing
similar gas ionization ratios and dust mixtures. The agreement between the
abundances of the ISM and the stellar objects suggests that the local Galaxy is
also chemically homogeneous.Comment: 13 pages, 10 figures, 5 tables, accepted to A&
Effective action in DSR1 quantum field theory
We present the one-loop effective action of a quantum scalar field with DSR1
space-time symmetry as a sum over field modes. The effective action has real
and imaginary parts and manifest charge conjugation asymmetry, which provides
an alternative theoretical setting to the study of the particle-antiparticle
asymmetry in nature.Comment: 8 page
Developing a site-conditions map for seismic hazard Assessment in Portugal
The evaluation of site effects on a broad scale is a critical issue for seismic hazard and risk assessment, land use planning and emergency planning. As characterization of site conditions based on the shear-wave velocity has become increasingly important, several methods have been proposed in the literature to estimate its average over the first thirty meters (Vs30) from more extensively available data. These methods include correlations with geologic-geographic defined units and topographic slope. In this paper we present the first steps towards the development of a site–conditions map for Portugal, based on a regional database of shear-wave velocity data, together with geological, geographic, and lithological information. We computed Vs30 for each database site and classified it according to the corresponding geological-lithological information using maps at the smallest scale available (usually 1:50000). We evaluated the consistency of Vs30 values within generalized-geological classes, and assessed the performance of expedient methodologies proposed in the literature
Quantum dynamics of localized excitations in a symmetric trimer molecule
We study the time evolution of localized (local bond) excitations in a
symmetric quantum trimer molecule. We relate the dynamical properties of
localized excitations such as their spectral intensity and their temporal
evolution (survival probability and tunneling of bosons) to their degree of
overlap with quantum tunneling pair states. We report on the existence of
degeneracy points in the trimer eigenvalue spectrum for specific values of
parameters due to avoided crossings between tunneling pair states and
additional states. The tunneling of localized excitations which overlap with
these degenerate states is suppressed on all times. As a result local bond
excitations may be strongly localized forever, similar to their classical
counterparts.Comment: 9 pages, 12 figures. Improved version with more discussions. Some
figures were replaced for better understanding. Accepted in Phys. Rev.
Schwinger's Method for the Massive Casimir Effect
We apply to the massive scalar field a method recently proposed by Schwinger
to calculate the Casimir effect. The method is applied with two different
regularization schemes: the Schwinger original one by means of Poisson formula
and another one by means of analytical continuation.Comment: plain TeX, 6 pages, DFTUZ-93-2
HST Survey of Clusters in Nearby Galaxies. II. Statistical Analysis of Cluster Populations
We present a statistical system that can be used in the study of cluster
populations. The basis of our approach is the construction of synthetic cluster
color-magnitude-radius diagrams (CMRDs), which we compare with the observed
data using a maximum likelihood calculation. This approach permits a relatively
easy incorporation of incompleteness (a function of not only magnitude and
color, but also radius), photometry errors and biases, and a variety of other
complex effects into the calculation, instead of the more common procedure of
attempting to correct for those effects.
We then apply this procedure to our NGC 3627 data from Paper I. We find that
we are able to successfully model the observed CMRD and constrain a number of
parameters of the cluster population. We measure a power law mass function
slope of alpha = -1.50 +/- 0.07, and a distribution of core radii centered at
r_c = 1.53 +/- 0.15 pc. Although the extinction distribution is less
constrained, we measured a value for the mean extinction consistent with that
determined in Paper I from the Cepheids.Comment: 21 pages, 3 figures accepted for publication by A
- …