3,808 research outputs found

    Modified algebraic Bethe ansatz for XXZ chain on the segment - III - Proof

    Get PDF
    In this paper, we prove the off-shell equation satisfied by the transfer matrix associated with the XXZ spin-12\frac12 chain on the segment with two generic integrable boundaries acting on the Bethe vector. The essential step is to prove that the expression of the action of a modified creation operator on the Bethe vector has an off-shell structure which results in an inhomogeneous term in the eigenvalues and Bethe equations of the corresponding transfer matrix.Comment: V2 published version, 16 page

    Increasing damage tolerance in composites using hierarchical brick-and-mortar microstructures

    Get PDF
    Composites are attractive materials because of their high specific stiffness and specific strength, but their application in industry is restricted by their inherent lack of damage tolerance and stable energy dissipation mechanisms, due to the brittleness of the fibres. Nature overcomes a similar issue by arranging natural composites, made of mostly brittle constituents, in discontinuous and hierarchical microstructures. This work aims at evaluating the potential of hierarchical discontinuous carbon-fibre reinforced polymers to achieve damage tolerance, by a combination of modelling and experiments. Two different models (one analytical and the other numerical) are developed to predict the tensile response of hierarchical brick-and-mortar microstructures with two levels of hierarchies, and to design specimens with a non-linear response. Such specimens are then manufactured using laser micro-milled carbon/epoxy thin-plies, and tested under tension. The results show that the presence of discontinuities and hierarchies promotes stable energy dissipation before failure, ensures damage diffusion throughout the specimen, and delays damage localisation in otherwise brittle composites

    Duration of Low Wage Employment: A Study Based on a Survival Model

    Get PDF
    This paper includes a survival analysis which attempts to explain the duration, as in the number of years a worker remains in a low wage situation. Explanatory variables take into account the characteristics of the employee, such as education, age, tenure with the company, gender and nationality, and the characteristics of the job and the company such as industry affiliation, number of employees, age of the company and location.low wage, survival, Portugal

    Phonon Linewidths and Electron Phonon Coupling in Nanotubes

    Full text link
    We prove that Electron-phonon coupling (EPC) is the major source of broadening for the Raman G and G- peaks in graphite and metallic nanotubes. This allows us to directly measure the optical-phonon EPCs from the G and G- linewidths. The experimental EPCs compare extremely well with those from density functional theory. We show that the EPC explains the difference in the Raman spectra of metallic and semiconducting nanotubes and their dependence on tube diameter. We dismiss the common assignment of the G- peak in metallic nanotubes to a Fano resonance between phonons and plasmons. We assign the G+ and G- peaks to TO (tangential) and LO (axial) modes.Comment: 5 pages, 4 figures (correction in label of fig 3

    Observation of the Kohn anomaly near the K point of bilayer graphene

    Full text link
    The dispersion of electrons and phonons near the K point of bilayer graphene was investigated in a resonant Raman study using different laser excitation energies in the near infrared and visible range. The electronic structure was analyzed within the tight-binding approximation, and the Slonczewski-Weiss-McClure (SWM) parameters were obtained from the analysis of the dispersive behavior of the Raman features. A softening of the phonon branches was observed near the K point, and results evidence the Kohn anomaly and the importance of considering electron-phonon and electron-electron interactions to correctly describe the phonon dispersion in graphene systems.Comment: 4 pages, 4 figure

    Probing the Electronic Structure of Bilayer Graphene by Raman Scattering

    Full text link
    The electronic structure of bilayer graphene is investigated from a resonant Raman study using different laser excitation energies. The values of the parameters of the Slonczewski-Weiss-McClure model for graphite are measured experimentally and some of them differ significantly from those reported previously for graphite, specially that associated with the difference of the effective mass of electrons and holes. The splitting of the two TO phonon branches in bilayer graphene is also obtained from the experimental data. Our results have implications for bilayer graphene electronic devices.Comment: 4 pages, 4 figure

    Implementing structural fuses in CFRP components via microstructurally-engineered crack paths

    Get PDF
    This study aims to develop and implement actual carbon fibre-reinforced polymer (CFRP) solutions for realising structural fuses in real components. To this end, we have developed various concepts for structural fuses, applied to generic idealised components and aimed at engaging different in-plane and through-the-thickness damage propagation mechanisms. Micro-cut patterns (MCPs) / crack path combinations have been engraved on thin-ply CFRP prepregs (by using a laser cut machine) for manufacturing CFRP specimens. Afterwards, we have carried out a series of experimental studies to evaluate the fracture properties of various MCPs under three-point bending (3PB). Then, 3PB results were used to refine and down-select our concepts, for use in our generic idealised component design to test them under indentation test using a cantilever beam rig. The test results demonstrated that MCPs can provide significant control over the fracture locus and path, additionally allowing the failure initiation load and energy dissipation to be tailored

    The identification of the Rosa S-locus and implications on the evolution of the Rosaceae gametophytic self-incompatibility systems

    Get PDF
    In Rosaceae species, two gametophytic self-incompatibility (GSI) mechanisms are described, the Prunus self-recognition system and the Maleae (Malus/Pyrus/Sorbus) non-self- recognition system. In both systems the pistil component is a S-RNase gene, but from two distinct phylogenetic lineages. The pollen component, always a F-box gene(s), in the case of Prunus is a single gene, and in Maleae there are multiple genes. Previously, the Rosa S-locus was mapped on chromosome 3, and three putative S-RNase genes were identified in the R. chinensis ‘Old Blush’ genome. Here, we show that these genes do not belong to the S-locus region. Using R. chinensis and R. multiflora genomes and a phylogenetic approach, we identified the S-RNase gene, that belongs to the Prunus S-lineage. Expression patterns support this gene as being the S-pistil. This gene is here also identified in R. moschata, R. arvensis, and R. minutifolia low coverage genomes, allowing the identification of positively selected amino acid sites, and thus, further supporting this gene as the S-RNase. Furthermore, genotype–phenotype association experiments also support this gene as the S-RNase. For the S-pollen GSI component we find evidence for multiple F-box genes, that show the expected expression pattern, and evidence for diversifying selection at the F-box genes within an S-haplotype. Thus, Rosa has a non-self-recognition system, like in Maleae species, despite the S-pistil gene belonging to the Prunus S-RNase lineage. These findings are discussed in the context of the Rosaceae GSI evolution. Knowledge on the Rosa S-locus has practical implications since genes controlling floral and other ornamental traits are in linkage disequilibrium with the S-locus.This work was financed by the National Funds through FCT—Fundação para a CiĂȘncia e a Tecnologia, I.P., under the project UIDB/04293/2020, and the Centre National de la Recherche Scientifique (CNRS)

    Quantifying the effects of learning styles on attention

    Get PDF
    Monitoring and managing attention in the classroom is nowadays an important aspect where the level of learner’s attention affects learning results. When students are using devices connected to the Internet in learning activities in which they send and received notifications, beeps, and vibrations and blinking messages, the ability to focus becomes increasingly important. This is true in many different domains, from the classroom to the workplace. This paper deals with the issue of attention monitoring, with the aim of providing a non-intrusive, reliable and easy tool that can be used freely in schools or organizations, without changing or interfering with the established working routines. Specifically, we look at desk students in learning activities, in which the student spends long time interacting with the computer.This work has been supported by COMPETE: POCI-01-0145- FEDER-007043 and FCT – Fundação para a CiĂȘncia e Tecnologia within the Project Scope: UID/CEC/00319/2013.info:eu-repo/semantics/publishedVersio
    • 

    corecore