31,555 research outputs found

    Luminosity Profiles of Merger Remnants

    Full text link
    Using published luminosity and molecular gas profiles of the late-stage mergers NGC 3921, NGC 7252 and Arp 220, we examine the expected luminosity profiles of the evolved merger remnants, especially in light of the massive CO complexes that are observed in their nuclei. For NGC 3921 and NGC 7252 we predict that the resulting luminosity profiles will be characterized by an r^{1/4} law. In view of previous optical work on these systems, it seems likely that they will evolve into normal ellipticals as regards their optical properties. Due to a much higher central molecular column density, Arp 220 might not evolve such a ``seamless'' light profile. We conclude that ultraluminous infrared mergers such as Arp 220 either evolve into ellipticals with anomalous luminosity profiles, or do not produce many low-mass stars out of their molecular gas complexes.Comment: Final refereed version. Note new title. 4 pages, 2 encapsulated color figures, uses emulateapj.sty. Accepted to ApJL. Also available at http://www.cv.nrao.edu/~jhibbard/Remnants/remnants.htm

    Residual stress measurements in carbon steel

    Get PDF
    External dc magnetic field-induced changes in natural velocity of Rayleigh surface waves were measured in steel specimens under various stress conditions. The low field slopes of curves representing the fractional changes of natural velocity were proved to provide correct stress information in steels with different metallurgical properties. The slopes of curves under uniaxial compression, exceeding about one third of the yield stress, fell below zero in all the specimens when magnetized along the stress axis. The slopes under tension varied among different steels but remained positive in any circumstances. The stress effect was observed for both applied and residual stress. A physical interpretation of these results is given based on the stress-induced domain structure changes and the delta epsilon effect. Most importantly, it is found that the influence of detailed metallurgical properties cause only secondary effects on the obtained stress information

    Large anisotropy in the optical conductivity of YNi2B2C

    Full text link
    The optical properties of YNi2_2B2_2C are studied by using the first-principles full-potential linearized augmented plane wave (FLAPW) method within the local density approximation. Anisotropic behavior is obtained in the optical conductivity, even though the electronic structure shows 3D character. A large peak in σz\sigma_z is obtained at 2.4 eV. The anisotropic optical properties are analyzed in terms of interband transitions between energy levels and found that the Ni site plays an important role. The electronic energy loss spectroscopy (EELS) spectra are also calculated to help elucidate the anisotropic properties in this system.Comment: revtex4, 4 pages, 5 figures, to appear in PR

    Radial Gas Flows in Colliding Galaxies: Connecting Simulations and Observations

    Get PDF
    (abridged) We investigate the detailed response of gas to the formation of transient and long-lived dynamical structures induced in the early stages of a disk-disk collision, and identify observational signatures of radial gas inflow through a detailed examination of the collision simulation of an equal mass bulge dominated galaxy. Stars respond to the tidal interaction by forming both transient arms and long lived m=2 bars, but the gas response is more transient, flowing directly toward the central regions within about 10^8 years after the initial collision. The rate of inflow declines when more than half of the total gas supply reaches the inner few kpc, where the gas forms a dense nuclear ring inside the stellar bar. The average gas inflow rate to the central 1.8 kpc is \~7 Msun/yr with a peak rate of 17 Msun/yr. The evolution of gas in a bulgeless progenitor galaxy is also discussed, and a possible link to the ``chain galaxy'' population observed at high redshifts is inferred. The evolution of the structural parameters (the asymmetry and concentration) of both stars and gas are studied in detail. Further, a new structural parameter (the compactness parameter K) that traces the evolution of the size scale of the gas relative to the stellar disk is introduced. Non-circular gas kinematics driven by the perturbation of the non-axisymmetric structure can produce distinct emission features in the "forbidden velocity quadrants'' of the position-velocity diagram (PVD). The dynamical mass calculated using the rotation curve derived from fitting the emission envelope of the PVD can determine the true mass to within 20% to 40%. The evolution of the molecular fraction $M_H2/M_(H2 + HI) and the compactness (K) are potential tracers to quantitatively assign the age of the interaction.Comment: 52 pages, 20 figures (9 jpgs), accepted for publication in ApJ Version with all figures at http://cfa-www.harvard.edu/~diono/ms.ps.g

    Electronic structures of antiperovskite superconductors: MgXNi3_3 (X=B,C,N)

    Full text link
    We have investigated electronic structures of a newly discovered antiperovskite superconductor MgCNi3_3 and related compounds MgBNi3_3 and MgNNi3_3. In MgCNi3_3, a peak of very narrow and high density of states is located just below EF\rm E_F, which corresponds to the π\pi^* antibonding state of Ni-3d and C-2p2p but with the predominant Ni-3d character. The prominent nesting feature is observed in the Γ\Gamma-centered electron Fermi surface of an octahedron-cage-like shape that originates from the 19th band. The estimated superconducting parameters based on the simple rigid-ion approximation are in reasonable agreement with experiment, suggesting that the superconductivity in MgCNi3_3 is described well by the conventional phonon mechanism.Comment: 5 pages, 5 figure

    Electronic Structures of Antiperovskite Superconductor MgCNi3_3 and Related Compounds

    Full text link
    Electronic structure of a newly discovered antiperovskite superconductor MgCNi3_3 is investigated by using the LMTO band method. The main contribution to the density of states (DOS) at the Fermi energy EFE_{\rm F} comes from Ni 3dd states which are hybridized with C 2pp states. The DOS at EFE_{\rm F} is varied substantially by the hole or electron doping due to the very high and narrow DOS peak located just below EFE_{\rm F}. We have also explored electronic structures of C-site and Mg-site doped MgCNi3_3 systems, and described the superconductivity in terms of the conventional phonon mechanism.Comment: 3 pages, presented at ORBITAL2001 September 11-14, 2001 (Sendai, JAPAN

    Electronic structure of metallic antiperovskite compound GaCMn3_3

    Full text link
    We have investigated electronic structures of antiperovskite GaCMn3_3 and related Mn compounds SnCMn3_3, ZnCMn3_3, and ZnNMn3_3. In the paramagnetic state of GaCMn3_3, the Fermi surface nesting feature along the ΓR\Gamma{\rm R} direction is observed, which induces the antiferromagnetic (AFM) spin ordering with the nesting vector {\bf Q} ΓR\sim \Gamma{\rm R}. Calculated susceptibilities confirm the nesting scenario for GaCMn3_3 and also explain various magnetic structures of other antiperovskite compounds. Through the band folding effect, the AFM phase of GaCMn3_3 is stabilized. Nearly equal densities of states at the Fermi level in the ferromagnetic and AFM phases of GaCMn3_3 indicate that two phases are competing in the ground state.Comment: 4 pages, 5 figure
    corecore