42 research outputs found

    Tagging Scientific Publications using Wikipedia and Natural Language Processing Tools. Comparison on the ArXiv Dataset

    Full text link
    In this work, we compare two simple methods of tagging scientific publications with labels reflecting their content. As a first source of labels Wikipedia is employed, second label set is constructed from the noun phrases occurring in the analyzed corpus. We examine the statistical properties and the effectiveness of both approaches on the dataset consisting of abstracts from 0.7 million of scientific documents deposited in the ArXiv preprint collection. We believe that obtained tags can be later on applied as useful document features in various machine learning tasks (document similarity, clustering, topic modelling, etc.)

    Using terminology extraction techniques for improving traceability from formal models to textual requirements

    Get PDF
    cerbah2000aInternational audienceThis article deals with traceability in sotfware engineering. More precisely, we concentrate on the role of terminological knowledge the mapping between (informal) textual requirements and (formal) object models. We show that terminological knowledge facilitates production of traceability links, provided that language processing technologies allow to elaborate semi-automatically the required terminological resources. The presented system is one step towards incremental formalization from textual knowledge

    ASCOT: a text mining-based web-service for efficient search and assisted creation of clinical trials

    Get PDF
    Clinical trials are mandatory protocols describing medical research on humans and among the most valuable sources of medical practice evidence. Searching for trials relevant to some query is laborious due to the immense number of existing protocols. Apart from search, writing new trials includes composing detailed eligibility criteria, which might be time-consuming, especially for new researchers. In this paper we present ASCOT, an efficient search application customised for clinical trials. ASCOT uses text mining and data mining methods to enrich clinical trials with metadata, that in turn serve as effective tools to narrow down search. In addition, ASCOT integrates a component for recommending eligibility criteria based on a set of selected protocols

    Benchmarking Ontologies: Bigger or Better?

    Get PDF
    A scientific ontology is a formal representation of knowledge within a domain, typically including central concepts, their properties, and relations. With the rise of computers and high-throughput data collection, ontologies have become essential to data mining and sharing across communities in the biomedical sciences. Powerful approaches exist for testing the internal consistency of an ontology, but not for assessing the fidelity of its domain representation. We introduce a family of metrics that describe the breadth and depth with which an ontology represents its knowledge domain. We then test these metrics using (1) four of the most common medical ontologies with respect to a corpus of medical documents and (2) seven of the most popular English thesauri with respect to three corpora that sample language from medicine, news, and novels. Here we show that our approach captures the quality of ontological representation and guides efforts to narrow the breach between ontology and collective discourse within a domain. Our results also demonstrate key features of medical ontologies, English thesauri, and discourse from different domains. Medical ontologies have a small intersection, as do English thesauri. Moreover, dialects characteristic of distinct domains vary strikingly as many of the same words are used quite differently in medicine, news, and novels. As ontologies are intended to mirror the state of knowledge, our methods to tighten the fit between ontology and domain will increase their relevance for new areas of biomedical science and improve the accuracy and power of inferences computed across them

    KneeTex: an ontology–driven system for information extraction from MRI reports

    Get PDF
    Background. In the realm of knee pathology, magnetic resonance imaging (MRI) has the advantage of visualising all structures within the knee joint, which makes it a valuable tool for increasing diagnostic accuracy and planning surgical treatments. Therefore, clinical narratives found in MRI reports convey valuable diagnostic information. A range of studies have proven the feasibility of natural language processing for information extraction from clinical narratives. However, no study focused specifically on MRI reports in relation to knee pathology, possibly due to the complexity of knee anatomy and a wide range of conditions that may be associated with different anatomical entities. In this paper we describe KneeTex, an information extraction system that operates in this domain. Methods. As an ontology–driven information extraction system, KneeTex makes active use of an ontology to strongly guide and constrain text analysis. We used automatic term recognition to facilitate the development of a domain–specific ontology with sufficient detail and coverage for text mining applications. In combination with the ontology, high regularity of the sublanguage used in knee MRI reports allowed us to model its processing by a set of sophisticated lexico–semantic rules with minimal syntactic analysis. The main processing steps involve named entity recognition combined with coordination, enumeration, ambiguity and co–reference resolution, followed by text segmentation. Ontology–based semantic typing is then used to drive the template filling process. Results. We adopted an existing ontology, TRAK (Taxonomy for RehAbilitation of Knee conditions), for use within KneeTex. The original TRAK ontology expanded from 1,292 concepts, 1,720 synonyms and 518 relationship instances to 1,621 concepts, 2,550 synonyms and 560 relationship instances. This provided KneeTex with a very fine–grained lexico–semantic knowledge base, which is highly attuned to the given sublanguage. Information extraction results were evaluated on a test set of 100 MRI reports. A gold standard consisted of 1,259 filled template records with the following slots: finding, finding qualifier, negation, certainty, anatomy and anatomy qualifier. KneeTex extracted information with precision of 98.00%, recall of 97.63% and F–measure of 97.81%, the values of which are in line with human–like performance. Conclusions. KneeTex is an open–source, stand–alone application for information extraction from narrative reports that describe an MRI scan of the knee. Given an MRI report as input, the system outputs the corresponding clinical findings in the form of JavaScript Object Notation objects. The extracted information is mapped onto TRAK, an ontology that formally models knowledge relevant for the rehabilitation of knee conditions. As a result, formally structured and coded information allows for complex searches to be conducted efficiently over the original MRI reports, thereby effectively supporting epidemiologic studies of knee conditions

    A lexico-syntactic analysis of antonym co-occurrence in spoken English

    No full text

    Identifying Newly-coined Terms which are to be Important in Special Domains

    No full text
    corecore