34,023 research outputs found
WEST-3 wind turbine simulator development
The software developed for WEST-3, a new, all digital, and fully programmable wind turbine simulator is given. The process of wind turbine simulation on WEST-3 is described in detail. The major steps are, the processing of the mathematical models, the preparation of the constant data, and the use of system software generated executable code for running on WEST-3. The mechanics of reformulation, normalization, and scaling of the mathematical models is discussed in detail, in particulr, the significance of reformulation which leads to accurate simulations. Descriptions for the preprocessor computer programs which are used to prepare the constant data needed in the simulation are given. These programs, in addition to scaling and normalizing all the constants, relieve the user from having to generate a large number of constants used in the simulation. Also given are brief descriptions of the components of the WEST-3 system software: Translator, Assembler, Linker, and Loader. Also included are: details of the aeroelastic rotor analysis, which is the center of a wind turbine simulation model, analysis of the gimbal subsystem; and listings of the variables, constants, and equations used in the simulation
Tunable coupling in circuit quantum electrodynamics with a superconducting V-system
Recent progress in superconducting qubits has demonstrated the potential of
these devices for the future of quantum information processing. One desirable
feature for quantum computing is independent control of qubit interactions as
well as qubit energies. We demonstrate a new type of superconducting charge
qubit that has a V-shaped energy spectrum and uses quantum interference to
provide independent control over the qubit energy and dipole coupling to a
superconducting cavity. We demonstrate dynamic access to the strong coupling
regime by tuning the coupling strength from less than 200 kHz to more than 40
MHz. This tunable coupling can be used to protect the qubit from cavity-induced
relaxation and avoid unwanted qubit-qubit interactions in a multi-qubit system.Comment: 5 pages, 4 figure
A new gas discharge process for preparation of non-fouling surfaces on biomaterials
A non-fouling surface containing immobilized polyethylene oxide (PEO) was achieved using an argon radio-frequency glow discharge treatment (RFGD) of polyethylene films precoated with Brij hydrocarbon-PEO surfactants. Surface wettability of RFGD-treated and washed surfaces increased the most when PEO surfactants with unsaturated and/or long alkyl tails were used. ESCA measurements of treated and washed surfaces showed increases of surface O/C ratios and ether carbon peaks in high resolution Cls spectra. These results demonstrate the retention of the PEO surfactants on the treated surfaces. Fibrinogen adsorp tion on these treated surfaces was significantly reduced, from 500 to 50 ng/cm2, indicating the non-fouling properties of the RFGD-immobilized PEO surfactants
Rocket instrumentation for the measurement of D-region electron density and collision frequencies Scientific report no. 244
Black Brant II sounding rocket instrumentation for measurement of D layer electron density and collision rat
Recommended from our members
Data assimilation insights on selecting the most valuable atmospheric measurements
We discuss how objective guidance on selecting the most valuable atmospheric measurements on future Mars spacecraft missions can be provided through already developed Martian atmospheric data assimilation systems, and in particular through Observing System Simulation Experiments (OSSEs) which are widely used to design instruments for the Earth’s atmosphere
Dispersive Photon Blockade in a Superconducting Circuit
Mediated photon-photon interactions are realized in a superconducting
coplanar waveguide cavity coupled to a superconducting charge qubit. These
non-resonant interactions blockade the transmission of photons through the
cavity. This so-called dispersive photon blockade is characterized by measuring
the total transmitted power while varying the energy spectrum of the photons
incident on the cavity. A staircase with four distinct steps is observed and
can be understood in an analogy with electron transport and the Coulomb
blockade in quantum dots. This work differs from previous efforts in that the
cavity-qubit excitations retain a photonic nature rather than a hybridization
of qubit and photon and provides the needed tolerance to disorder for future
condensed matter experiments.Comment: 4 pages, 3 figure
Spectral weight redistribution in (LaNiO3)n/(LaMnO3)2 superlattices from optical spectroscopy
We have studied the optical properties of four
(LaNiO)/(LaMnO) superlattices (SL) (=2, 3, 4, 5) on
SrTiO substrates. We have measured the reflectivity at temperatures from 20
K to 400 K, and extracted the optical conductivity through a fitting procedure
based on a Kramers-Kronig consistent Lorentz-Drude model. With increasing
LaNiO thickness, the SLs undergo an insulator-to-metal transition (IMT)
that is accompanied by the transfer of spectral weight from high to low
frequency. The presence of a broad mid-infrared band, however, shows that the
optical conductivity of the (LaNiO)/(LaMnO) SLs is not a linear
combination of the LaMnO and LaNiO conductivities. Our observations
suggest that interfacial charge transfer leads to an IMT due to a change in
valence at the Mn and Ni sites.Comment: Accepted for publication in Phys. Rev. Lett. 5 pages, 5 figure
An analytical and experimental investigation of resistojet plumes
As a part of the electrothermal propulsion plume research program at the NASA Lewis Research Center, efforts have been initiated to analytically and experimentally investigate the plumes of resistojet thrusters. The method of G.A. Simons for the prediction of rocket exhaust plumes is developed for the resistojet. Modifications are made to the source flow equations to account for the increased effects of the relatively large nozzle boundary layer. Additionally, preliminary mass flux measurements of a laboratory resistojet using CO2 propellant at 298 K have been obtained with a cryogenically cooled quartz crystal microbalance (QCM). There is qualitative agreement between analysis and experiment, at least in terms of the overall number density shape functions in the forward flux region
Intermodal Energy Transfer in a Tapered Optical Fiber: Optimizing Transmission
We present an experimental and theoretical study of the energy transfer
between modes during the tapering process of an optical nanofiber through
spectrogram analysis. The results allow optimization of the tapering process,
and we measure transmission in excess of 99.95% for the fundamental mode. We
quantify the adiabaticity condition through calculations and place an upper
bound on the amount of energy transferred to other modes at each step of the
tapering, giving practical limits to the tapering angle.Comment: 29 pages, 17 figure
- …