99 research outputs found

    Instabilities and the roton spectrum of a quasi-1D Bose-Einstein condensed gas with dipole-dipole interactions

    Full text link
    We point out the possibility of having a roton-type excitation spectrum in a quasi-1D Bose-Einstein condensate with dipole-dipole interactions. Normally such a system is quite unstable due to the attractive portion of the dipolar interaction. However, by reversing the sign of the dipolar interaction using either a rotating magnetic field or a laser with circular polarization, a stable cigar-shaped configuration can be achieved whose spectrum contains a `roton' minimum analogous to that found in helium II. Dipolar gases also offer the exciting prospect to tune the depth of this `roton' minimum by directly controlling the interparticle interaction strength. When the minimum touches the zero-energy axis the system is once again unstable, possibly to the formation of a density wave.Comment: 7 pages, 6 figures. Special Issue: "Ultracold Polar Molecules: Formation and Collisions

    Observing collapse in two colliding dipolar Bose-Einstein condensates

    Full text link
    We study the collision of two Bose-Einstein condensates with pure dipolar interaction. A stationary pure dipolar condensate is known to be stable when the atom number is below a critical value. However, collapse can occur during the collision between two condensates due to local density fluctuations even if the total atom number is only a fraction of the critical value. Using full three-dimensional numerical simulations, we observe the collapse induced by local density fluctuations. For the purpose of future experiments, we present the time dependence of the density distribution, energy per particle and the maximal density of the condensate. We also discuss the collapse time as a function of the relative phase between the two condensates.Comment: 6 pages, 7 figure

    Strong dipolar effects in a quantum ferrofluid

    Full text link
    We report on the realization of a Chromium Bose-Einstein condensate (BEC) with strong dipolar interaction. By using a Feshbach resonance, we reduce the usual isotropic contact interaction, such that the anisotropic magnetic dipole-dipole interaction between 52Cr atoms becomes comparable in strength. This induces a change of the aspect ratio of the cloud, and, for strong dipolar interaction, the inversion of ellipticity during expansion - the usual "smoking gun" evidence for BEC - can even be suppressed. These effects are accounted for by taking into account the dipolar interaction in the superfluid hydrodynamic equations governing the dynamics of the gas, in the same way as classical ferrofluids can be described by including dipolar terms in the classical hydrodynamic equations. Our results are a first step in the exploration of the unique properties of quantum ferrofluids.Comment: Final, published versio

    Depolarisation cooling of an atomic cloud

    Full text link
    We propose a cooling scheme based on depolarisation of a polarised cloud of trapped atoms. Similar to adiabatic demagnetisation, we suggest to use the coupling between the internal spin reservoir of the cloud and the external kinetic reservoir via dipolar relaxation to reduce the temperature of the cloud. By optical pumping one can cool the spin reservoir and force the cooling process. In case of a trapped gas of dipolar chromium atoms, we show that this cooling technique can be performed continuously and used to approach the critical phase space density for BECComment: 8 pages, 5 figure

    Expansion dynamics of a dipolar Bose-Einstein condensate

    Full text link
    Our recent measurements on the expansion of a chromium dipolar condensate after release from an optical trapping potential are in good agreement with an exact solution of the hydrodynamic equations for dipolar Bose gases. We report here the theoretical method used to interpret the measurement data as well as more details of the experiment and its analysis. The theory reported here is a tool for the investigation of different dynamical situations in time-dependent harmonic traps.Comment: 12 pages. Submitted to PR

    Dipolar Relaxation in an ultra-cold Gas of magnetically trapped chromium atoms

    Full text link
    We have investigated both theoretically and experimentally dipolar relaxation in a gas of magnetically trapped chromium atoms. We have found that the large magnetic moment of 6 μB\mu_B results in an event rate coefficient for dipolar relaxation processes of up to 3.210113.2\cdot10^{-11} cm3^{3}s1^{-1} at a magnetic field of 44 G. We present a theoretical model based on pure dipolar coupling, which predicts dipolar relaxation rates in agreement with our experimental observations. This very general approach can be applied to a large variety of dipolar gases.Comment: 9 pages, 9 figure

    Observation of dipole-dipole interaction in a degenerate quantum gas

    Full text link
    We have investigated the expansion of a Bose-Einstein condensate (BEC) of strongly magnetic chromium atoms. The long-range and anisotropic magnetic dipole-dipole interaction leads to an anisotropic deformation of the expanding Cr-BEC which depends on the orientation of the atomic dipole moments. Our measurements are consistent with the theory of dipolar quantum gases and show that a Cr-BEC is an excellent model system to study dipolar interactions in such gases.Comment: 4 pages, 2 figure

    Production of a chromium Bose-Einstein condensate

    Full text link
    The recent achievement of Bose-Einstein condensation of chromium atoms [1] has opened longed-for experimental access to a degenerate quantum gas with long-range and anisotropic interaction. Due to the large magnetic moment of chromium atoms of 6 {μ\mu}B, in contrast to other Bose- Einstein condensates (BECs), magnetic dipole-dipole interaction plays an important role in a chromium BEC. Many new physical properties of degenerate gases arising from these magnetic forces have been predicted in the past and can now be studied experimentally. Besides these phenomena, the large dipole moment leads to a breakdown of standard methods for the creation of a chromium BEC. Cooling and trapping methods had to be adapted to the special electronic structure of chromium to reach the regime of quantum degeneracy. Some of them apply generally to gases with large dipolar forces. We present here a detailed discussion of the experimental techniques which are used to create a chromium BEC and alow us to produce pure condensates with up to {10510^5} atoms in an optical dipole trap. We also describe the methods used to determine the trapping parameters.Comment: 17 pages, 9 figure

    Rotons in gaseous Bose-Einstein condensates irradiated by a laser

    Full text link
    A gaseous Bose-Einstein condensate (BEC) irradiated by a far off-resonance laser has long-range interatomic correlations caused by laser-induced dipole-dipole interactions. These correlations, which are tunable via the laser intensity and frequency, can produce a `roton' minimum in the excitation spectrum--behavior reminiscent of the strongly correlated superfluid liquid helium II.Comment: 6 pages, includes 3 figure

    Ground state and elementary excitations of single and binary Bose-Einstein condensates of trapped dipolar gases

    Full text link
    We analyze the ground-state properties and the excitation spectrum of Bose-Einstein condensates of trapped dipolar particles. First, we consider the case of a single-component polarized dipolar gas. For this case we discuss the influence of the trapping geometry on the stability of the condensate as well as the effects of the dipole-dipole interaction on the excitation spectrum. We discuss also the ground state and excitations of a gas composed of two antiparallel dipolar components.Comment: 12 pages, 9 eps figures, final versio
    corecore