59,212 research outputs found

    Tidal scattering of stars on supermassive black holes in galactic centers

    Get PDF
    Some of the mass that feeds the growth of a massive black hole (BH) in a galactic center is supplied by tidal disruption of stars that approach it on unbound, low angular momentum orbits. For each star that is disrupted, others narrowly escape after being subjected to extreme tidal distortion, spin-up, mixing and mass-loss, which may affect their evolution and appearance. We show that it is likely that a significant fraction of the stars around massive BHs in galactic centers have undergone such extreme tidal interactions and survived subsequent total disruption, either by being deflected off their orbit or by missing the BH due to its Brownian motion. We discuss possible long-term observable consequences of this process, which may be relevant for understanding the nature of stars in galactic centers, and may provide a signature of the existence of massive BHs there.Comment: 5 pages 4 figures. ApJL in press, minor changes to reflect journal version including redifinition of unbound tidally disturbed stars and additional reference

    Nonperturbative m_X cut effects in B -> Xs l+ l- observables

    Full text link
    Recently, it was shown that in inclusive B -> Xs l+ l- decay, an angular decomposition provides three independent (q^2 dependent) observables. A strategy was formulated to extract all measurable Wilson coefficients in B -> Xs l+ l- from a few simple integrals of these observables in the low q^2 region. The experimental measurements in the low q^2 region require a cut on the hadronic invariant mass, which introduces a dependence on nonperturbative b quark distribution functions. The associated hadronic uncertainties could potentially limit the sensitivity of these decays to new physics. We compute the nonperturbative corrections to all three observables at leading and subleading order in the power expansion in \Lambda_QCD/m_b. We find that the subleading power corrections give sizeable corrections, of order -5% to -10% depending on the observable and the precise value of the hadronic mass cut. They cause a shift of order -0.05 GeV^2 to -0.1 GeV^2 in the zero of the forward-backward asymmetry.Comment: 11 pages, 4 figures, v2: corrected typos and Eq. (25), v3: journal versio

    Shape Function Effects in B -> X_c l \nu_l

    Full text link
    Owing to the fact that m_c^2 ~ m_b \Lambda_QCD, the endpoint region of the charged lepton energy spectrum in the inclusive decay B -> X_c l \nu_l is affected by the Fermi motion of the initial-state b quark bound in the B meson. This effect is described in QCD by shape functions. Including the mass of the final-state quark, we find that a different set of operators as employed in Ref. hep-ph/0205150 is needed for a consistent matching, when incorporating the subleading contributions in B -> X_q l \nu_l for both q = u and q = c. In addition, we modify the usual twist expansion in such a way that it yields a description of the lepton energy spectrum which is not just valid in the endpoint region, but over the entire phase space.Comment: 8 Pages, LaTeX, 2 figures; a few typos corrected and some clarifications added, final journal versio

    Color Intensity Projections: A simple way to display changes in astronomical images

    Get PDF
    To detect changes in repeated astronomical images of the same field of view (FOV), a common practice is to stroboscopically switch between the images. Using this method, objects that are changing in location or intensity between images are easier to see because they are constantly changing. A novel display method, called arrival time color intensity projections (CIPs), is presented that combines any number of grayscale images into a single color image on a pixel by pixel basis. Any values that are unchanged over the grayscale images look the same in the color image. However, pixels that change over the grayscale image have a color saturation that increases with the amount of change and a hue that corresponds to the timing of the changes. Thus objects moving in the grayscale images change from red to green to blue as they move across the color image. Consequently, moving objects are easier to detect and assess on the color image than on the grayscale images. A sequence of images of a comet plunging into the sun taken by the SOHO satellite (NASA/ESA) and Hubble Space Telescope images of a trans-Neptunian object (TNO) are used to demonstrate the method.Comment: 9 pages, 2 figures. Accepted for publication in Publications of the Astronomical Society of the Pacific. The quality of figure 1 been improved from the previous posted versio

    The orbital statistics of stellar inspiral and relaxation near a massive black hole: characterizing gravitational wave sources

    Full text link
    We study the orbital parameters distribution of stars that are scattered into nearly radial orbits and then spiral into a massive black hole (MBH) due to dissipation, in particular by emission of gravitational waves (GW). This is important for GW detection, e.g. by the Laser Interferometer Space Antenna (LISA). Signal identification requires knowledge of the waveforms, which depend on the orbital parameters. We use analytical and Monte Carlo methods to analyze the interplay between GW dissipation and scattering in the presence of a mass sink during the transition from the initial scattering-dominated phase to the final dissipation-dominated phase of the inspiral. Our main results are (1) Stars typically enter the GW-emitting phase with high eccentricities. (2) The GW event rate per galaxy is a few per Gyr for typical central stellar cusps, almost independently of the relaxation time or the MBH mass. (3) For intermediate mass black holes (IBHs) of ~a thousand solar masses such as may exist in dense stellar clusters, the orbits are very eccentric and the inspiral is rapid, so the sources are very short-lived.Comment: ApJ Accepte

    Resummation and Matching of bb-quark Mass Effects in bbˉHb\bar{b}H Production

    Full text link
    We use a systematic effective field theory setup to derive the bbˉHb\bar{b}H production cross section. Our result combines the merits of both fixed 4-flavor and 5-flavor schemes. It contains the full 4-flavor result, including the exact dependence on the bb-quark mass, and improves it with a resummation of collinear logarithms of mb/mHm_b/m_H. In the massless limit, it corresponds to a reorganized 5-flavor result. While we focus on bbˉHb\bar{b}H production, our method applies to generic heavy-quark initiated processes at hadron colliders. Our setup resembles the variable flavor number schemes known from heavy-flavor production in deep-inelastic scattering, but also differs in some key aspects. Most importantly, the effective bb-quark PDF appears as part of the perturbative expansion of the final result where it effectively counts as an O(αs)O(\alpha_s) object. The transition between the fixed-order (4-flavor) and resummation (5-flavor) regimes is governed by the low matching scale at which the bb-quark is integrated out. Varying this scale provides a systematic way to assess the perturbative uncertainties associated with the resummation and matching procedure and reduces by going to higher orders. We discuss the practical implementation and present numerical results for the bbˉHb\bar{b}H production cross section at NLO+NLL. We also provide a comparison to the corresponding predictions in the fixed 4-flavor and 5-flavor results and the Santander matching prescription. Compared to the latter, we find a slightly reduced uncertainty and a larger central value, with its central value lying at the lower edge of our uncertainty band.Comment: 54 pages, 16 figures. Final version to be published in JHEP (one ref added
    • …
    corecore