1,036 research outputs found

    Identification of a galaxy responsible for a high-redshift Lyman-α absorption system

    Get PDF
    Damped Lyman-α systems are high-column-density intergalactic clouds of hydrogen, the existence of which is inferred from absorption lines appearing in the emission spectra of distant quasars. The galaxies believed to be responsible for these absorption systems have been suggested as possible progenitors of the normal disk galaxies observed in the local Universe. Indeed, Lyman-α systems appear to contain a substantial fraction of the baryons known to exist in galaxies today. Here we report the optical detection of a galaxy (designated DLA2233 + 131) associated with a known damped Lyman-α absorption system at a redshift of z = 3.150. The properties of this galaxy correspond closely to those expected of a young disk galaxy in the early stages of formation, and show no evidence for an active nucleus. This finding gives strong support to the idea that damped Lyman-α systems represent a population of young galaxies at high red-shifts

    The Discovery of Extended Thermal X-ray Emission from PKS 2152-699: Evidence for a `Jet-cloud' Interaction

    Full text link
    A Chandra ACIS-S observation of PKS 2152-699 reveals thermal emission from a diffuse region around the core and a hotspot located 10" northeast from the core. This is the first detection of thermal X-ray radiation on kiloparsec scales from an extragalactic radio source. Two other hotspots located 47" north-northeast and 26" southwest from the core were also detected. Using a Raymond-Smith model, the first hotspot can be characterized with a thermal plasma temperature of 2.6×106\times10^6 K and an electron number density of 0.17 cm−3^{-3}. These values correspond to a cooling time of about 1.6×107\times10^7 yr. In addition, an emission line from the hotspot, possibly Fe xxv, was detected at rest wavelength 10.04\AA. The thermal X-ray emission from the first hotspot is offset from the radio emission but is coincident with optical filaments detected with broadband filters of HST/WFPC2. The best explanation for the X-ray, radio, and optical emission is that of a `jet-cloud' interaction. The diffuse emission around the nucleus of PKS 2152-699 can be modeled as a thermal plasma with a temperature of 1.2×107\times10^7 K and a luminosity of 1.8×1041\times10^{41} erg s−1^{-1}. This emission appears to be asymmetric with a small extension toward Hotspot A, similar to a jet. An optical hotspot (EELR) is seen less than an arcsecond away from this extension in the direction of the core. This indicates that the extension may be caused by the jet interacting with an inner ISM cloud, but entrainment of hot gas is unavoidable. Future observations are discussed.Comment: To appear in the Astrophysical Journal 21 pages, 5 Postscript figures, 1 table, AASTeX v. 5.

    Chandra Detection of X-ray Absorption Associated with a Damped Lyman Alpha System

    Full text link
    We have observed three quasars, PKS 1127-145, Q 1331+171 and Q0054+144, with the ACIS-S aboard the Chandra X-ray Observatory, in order to measure soft X-ray absorption associated with intervening 21-cm and damped Lyα\alpha absorbers. For PKS 1127-145, we detect absorption which, if associated with an intervening z_{abs}=0.312 absorber, implies a metallicity of 23% solar. If the absorption is not at z_{abs}=0.312, then the metallicity is still constrained to be less than 23% solar. The advantage of the X-ray measurement is that the derived metallicity is insensitive to ionization, inclusion of an atom in a molecule, or depletion onto grains. The X-ray absorption is mostly due to oxygen, and is consistent with the oxygen abundance of 30% solar derived from optical nebular emission lines in a foreground galaxy at the redshift of the absorber. For Q1331+171 and Q 0054+144, only upper limits were obtained, although the exposure times were intentionally short, since for these two objects we were interested primarily in measuring flux levels to plan for future observations. The imaging results are presented in a companion paper.Comment: 23 pages, 6 figures, accepted for publication in the Astrophysical Journa

    Evolution of the X-ray Emission of Radio-Quiet Quasars

    Get PDF
    We report new Chandra observations of seven optically faint, z \sim 4 radio-quiet quasars. We have combined these new observations with previous Chandra observations of radio-quiet quasars to create a sample of 174 sources. These sources have 0.1 < z < 4.7, and 10^{44} ergs s^{-1} < nu L_{nu} (2500 \AA) < 10^{48} ergs s^{-1}. The X-ray detection fraction is 90%. We find that the X-ray loudness of radio-quiet quasars decreases with UV luminosity and increases with redshift. The model that is best supported by the data has a linear dependence of optical-to-X-ray ratio, alpha_{ox}, on cosmic time, and a quadratic dependence of alpha_{ox} on log L_{UV}, where alpha_{ox} becomes X-ray quiet more rapidly at higher log L_{UV}. We find no significant evidence for a relationship between the X-ray photon index, Gamma_X, and the UV luminosity, and we find marginally significant evidence that the X-ray continuum flattens with increasing z (2 sigma). The Gamma_X-z anti-correlation may be the result of X-ray spectral curvature, redshifting of a Compton reflection component into the observed Chandra band, and/or redshifting of a soft excess out of the observed Chandra band. Using the results for Gamma_X, we show that the alpha_{ox}-z relationship is unlikely to be a spurious result caused by redshifting of the observable X-ray spectral region. A correlation between alpha_{ox} and z implies evolution of the accretion process. We present a qualitative comparison of these new results with models for accretion disk emission.Comment: Accepted by ApJ, 48 pages, 10 figures, 5 table

    A Uniform Analysis of the Ly-alpha Forest at z=0 - 5: V. The extragalactic ionizing background at low redshift

    Full text link
    In Paper III of our series "A Uniform Analysis of the Ly-alpha forest at z=0 - 5", we presented a set of 270 quasar spectra from the archives of the Faint Object Spectrograph on the Hubble Space Telescope. A total of 151 of these spectra, yielding 906 lines, are suitable for using the proximity effect signature to measure J(\nu_0), the mean intensity of the hydrogen-ionizing background radiation field, at low redshift. Using a maximum likelihood technique and the best estimates possible for each QSO's Lyman limit flux and systemic redshift, we find J(\nu_0)= 7.6^+9.4_-3.0 x 10^-23 ergs s^-1 cm^-2 Hz^-1 sr^-1 at at 0.03 < z < 1.67. This is in good agreement with the mean intensity expected from models of the background which incorporate only the known quasar population. When the sample is divided into two subsamples, consisting of lines with z 1, the values of J(\nu_0) found are 6.5^+38._-1.6 x 10^-23 ergs s^-1 cm^-2 Hz^-1 sr^-1, and 1.0^+3.8_-0.2 x 10^-22 ergs s^-1 cm^-2 Hz^-1 sr^-1, respectively, indicating that the mean intensity of the background is evolving over the redshift range of this data set. Relaxing the assumption that the spectral shapes of the sample spectra and the background are identical, the best fit HI photoionization rates are found to be 6.7 x 10^-13 s^-1 for all redshifts, and 1.9 x 10^-13 s^-1 and 1.3 x 10^-12 s^-1 for z 1, respectively. This work confirms that the evolution of the number density of Ly-alpha lines is driven by a decrease in the ionizing background from z ~ 2 to z ~ 0 as well as by the formation of structure in the intergalactic medium. (Abridged)Comment: 71 LaTeX pages, 20 encapsulated Postscript figures, Accepted for publication in ApJ, Figure 4 available at http://lithops.as.arizona.edu/~jill/QuasarSpectra/ or http://hea-www.harvard.edu/QEDT/QuasarSpectra

    Observational Constraints on the Dependence of Radio-Quiet Quasar X-ray Emission on Black Hole Mass and Accretion Rate

    Full text link
    In this work we use a sample of 318 radio-quiet quasars (RQQ) to investigate the dependence of the ratio of optical/UV flux to X-ray flux, alpha_ox, and the X-ray photon index, Gamma_X, on black hole mass, UV luminosity relative to Eddington, and X-ray luminosity relative to Eddington. Our sample is drawn from the SDSS, with X-ray data from ROSAT and Chandra, and optical data mostly from the SDSS; 153 of these sources have estimates of Gamma_X from Chandra. We estimate M_BH using standard estimates derived from the Hbeta, Mg II, and C IV broad emission lines. Our sample spans a broad range in black hole mass (10^6 < M_BH / M_Sun < 10^10) and redshift (z < 4.8). We find that alpha_ox increases with increasing M_BH and L_UV / L_Edd, and decreases with increasing L_X / L_Edd. In addition, we confirm the correlation seen in previous studies between Gamma_X and M_BH and both L_UV / L_Edd and L_X / L_Edd; however, we also find evidence that the dependence of Gamma_X of these quantities is not monotonic, changing sign at M_BH ~ 3 x 10^8 M_Sun. We argue that the alpha_ox correlations imply that the fraction of bolometric luminosity emitted by the accretion disk, as compared to the corona, increases with increasing accretion rate relative to Eddington. In addition, we argue that the Gamma_X trends are caused by a dependence of X-ray spectral index on accretion rate. We discuss our results within the context of accretion models with comptonizing corona, and discuss the implications of the alpha_ox correlations for quasar feedback. To date, this is the largest study of the dependence of RQQ X-ray parameters on black hole mass and related quantities, and the first to attempt to correct for the large statistical uncertainty in the broad line mass estimates.Comment: Accepted by ApJ, 23 pages, 15 figures, emulateapj styl
    • 

    corecore