1,095 research outputs found

    Free energy functionals for efficient phase field crystal modeling of structural phase transformations

    Full text link
    The phase field crystal (PFC) method has emerged as a promising technique for modeling materials with atomistic resolution on mesoscopic time scales. The approach is numerically much more efficient than classical density functional theory (CDFT), but its single mode free energy functional only leads to lattices with triangular (2D) or BCC (3D) symmetries. By returning to a closer approximation of the CDFT free energy functional, we develop a systematic construction of two-particle direct correlation functions that allow the study of a broad class of crystalline structures. This construction examines planar spacings, lattice symmetries, planar atomic densities and the atomic vibrational amplitude in the unit cell of the lattice and also provides control parameters for temperature and anisotropic surface energies. The power of this new approach is demonstrated by two examples of structural phase transformations.Comment: 4 pages, 4 figure

    Growth, microstructure, and failure of crazes in glassy polymers

    Full text link
    We report on an extensive study of craze formation in glassy polymers. Molecular dynamics simulations of a coarse-grained bead-spring model were employed to investigate the molecular level processes during craze nucleation, widening, and breakdown for a wide range of temperature, polymer chain length NN, entanglement length NeN_e and strength of adhesive interactions between polymer chains. Craze widening proceeds via a fibril-drawing process at constant drawing stress. The extension ratio is determined by the entanglement length, and the characteristic length of stretched chain segments in the polymer craze is Ne/3N_e/3. In the craze, tension is mostly carried by the covalent backbone bonds, and the force distribution develops an exponential tail at large tensile forces. The failure mode of crazes changes from disentanglement to scission for N/Ne∼10N/N_e\sim 10, and breakdown through scission is governed by large stress fluctuations. The simulations also reveal inconsistencies with previous theoretical models of craze widening that were based on continuum level hydrodynamics

    Unified Description of Aging and Rate Effects in Yield of Glassy Solids

    Full text link
    The competing effects of slow structural relaxations (aging) and deformation at constant strain rate on the shear yield stress Ï„y\tau^y of simple model glasses are examined using molecular simulations. At long times, aging leads to a logarithmic increase in density and Ï„y\tau^y. The yield stress also rises logarithmically with rate, but shows a sharp transition in slope at a rate that decreases with increasing age. We present a simple phenomenological model that includes both intrinsic rate dependence and the change in properties with the total age of the system at yield. As predicted by the model, all data for each temperature collapse onto a universal curve.Comment: 4 pages, 3 figure

    A QM/MM approach for low-symmetry defects in metals

    Get PDF
    Concurrent multiscale coupling is a powerful tool for obtaining quantum mechanically (QM) accurate material behavior in a small domain while still capturing long range stress fields using a molecular mechanical (MM) description. We outline an improved scheme for QM/MM coupling in metals which permits the QM treatment of a small region chosen from a large, arbitrary MM domain to calculate total system energy and relaxed geometry. In order to test our improved method, we compute solute-vacancy binding in bulk Al as well as the binding of Mg and Pb to a symmetric Σ5 grain boundary. Results are calculated with and without our improvement to the QM/MM scheme and compared to periodic QM results for the same systems. We find that our scheme accurately and efficiently reproduces periodic QM target values in these test systems and therefore can be expected to perform well using more general geometries. © 2016 Published by Elsevier B.V

    Jamming under tension in polymer crazes

    Full text link
    Molecular dynamics simulations are used to study a unique expanded jammed state. Tension transforms many glassy polymers from a dense glass to a network of fibrils and voids called a craze. Entanglements between polymers and interchain friction jam the system after a fixed increase in volume. As in dense jammed systems, the distribution of forces is exponential, but they are tensile rather than compressive. The broad distribution of forces has important implications for fibril breakdown and the ultimate strength of crazes.Comment: 4 pages, 4 figure

    Tensile Fracture of Welded Polymer Interfaces: Miscibility, Entanglements and Crazing

    Get PDF
    Large-scale molecular simulations are performed to investigate tensile failure of polymer interfaces as a function of welding time tt. Changes in the tensile stress, mode of failure and interfacial fracture energy GIG_I are correlated to changes in the interfacial entanglements as determined from Primitive Path Analysis. Bulk polymers fail through craze formation, followed by craze breakdown through chain scission. At small tt welded interfaces are not strong enough to support craze formation and fail at small strains through chain pullout at the interface. Once chains have formed an average of about one entanglement across the interface, a stable craze is formed throughout the sample. The failure stress of the craze rises with welding time and the mode of craze breakdown changes from chain pullout to chain scission as the interface approaches bulk strength. The interfacial fracture energy GIG_I is calculated by coupling the simulation results to a continuum fracture mechanics model. As in experiment, GIG_I increases as t1/2t^{1/2} before saturating at the average bulk fracture energy GbG_b. As in previous simulations of shear strength, saturation coincides with the recovery of the bulk entanglement density. Before saturation, GIG_I is proportional to the areal density of interfacial entanglements. Immiscibiltiy limits interdiffusion and thus suppresses entanglements at the interface. Even small degrees of immisciblity reduce interfacial entanglements enough that failure occurs by chain pullout and GI≪GbG_I \ll G_b

    A systematically coarse-grained model for DNA, and its predictions for persistence length, stacking, twist, and chirality

    Full text link
    We introduce a coarse-grained model of DNA with bases modeled as rigid-body ellipsoids to capture their anisotropic stereochemistry. Interaction potentials are all physicochemical and generated from all-atom simulation/parameterization with minimal phenomenology. Persistence length, degree of stacking, and twist are studied by molecular dynamics simulation as functions of temperature, salt concentration, sequence, interaction potential strength, and local position along the chain, for both single- and double-stranded DNA where appropriate. The model of DNA shows several phase transitions and crossover regimes in addition to dehybridization, including unstacking, untwisting, and collapse which affect mechanical properties such as rigidity and persistence length. The model also exhibits chirality with a stable right-handed and metastable left-handed helix.Comment: 30 pages, 20 figures, Supplementary Material available at http://www.physics.ubc.ca/~steve/publications.htm
    • …
    corecore