494 research outputs found

    Use of superheated liquids for the extraction of non-volatile compounds from wood: HPLC studies

    Get PDF
    A study of the extraction of oak wood compounds using superheated water-ethanol mixtures ranging from 10 to 60% ethanol is reported. Identification and characterization of the extracted compounds have been made by high performance liquid chromatography. The extraction has been performed using the static mode by single or repetitive cycles. The variables affecting the extraction process have been studied and their optimum values established (extraction time: 50 min; pressure: 40 atm; extraction temperature: 180º C). The study allows to compare the non-volatile polyphenol fractions obtained in this way with those present in commercial samples with fully agreement between them. In addition, the method allows manipulation of the extract composition by changing the working pressure, temperature and water-ethanol ratio

    Remarks on periodic boundary value problems for functional differential equations

    Get PDF
    AbstractWe extend some results on existence and approximation of solution for a class of first-order functional differential equations with periodic boundary conditions. We show the validity of the monotone iterative technique under weaker hypotheses and present some examples

    Density functional theory study of the nematic-isotropic transition in an hybrid cell

    Get PDF
    We have employed the Density Functional Theory formalism to investigate the nematic-isotropic capillary transitions of a nematogen confined by walls that favor antagonist orientations to the liquid crystal molecules (hybrid cell). We analyse the behavior of the capillary transition as a function of the fluid-substrate interactions and the pore width. In addition to the usual capillary transition between isotropic-like to nematic-like states, we find that this transition can be suppressed when one substrate is wet by the isotropic phase and the other by the nematic phase. Under this condition the system presents interface-like states which allow to continuously transform the nematic-like phase to the isotropic-like phase without undergoing a phase transition. Two different mechanisms for the disappearance of the capillary transition are identified. When the director of the nematic-like state is homogeneously planar-anchored with respect to the substrates, the capillary transition ends up in a critical point. This scenario is analogous to the observed in Ising models when confined in slit pores with opposing surface fields which have critical wetting transitions. When the nematic-like state has a linearly distorted director field, the capillary transition continuously transforms in a transition between two nematic-like states.Comment: 31 pages, 10 figures, submitted to J. Chem. Phy

    Flow injection determination of total catechins and procyanidins in white and red wines

    Get PDF
    An easily automatable flow-injection (FI) method for the determination of total catechins is reported. The method is based on the reaction of vanillin in acid medium to yield a coloured product with maximum absorption at 500 nm. After optimisation by the univariate and multivariate approaches as required, the linear range was established (between 10 and 90 mgL-1 and 10 and 250 mgL-1 for white and red wines, respectively). Then, the assessment of the proposed versus the reference method was studied in terms of repeatability (2.57 mgL-1), reproducibility (3.56 mgL-1) (no significant differences were found), detection and quantification limits (not far from those of the reference method and always sufficient for the determination of catechins in any type of wine), traceability (excellent correlation under all conditions) and sample throughput (23 samples h-1 for the proposed method versus 3 samples h-1 for the reference method)

    Asymptotic representations for hypergeometric-Bessel type function and fractional integrals

    Get PDF
    AbstractThe paper is devoted to the study of asymptotic relations for the functionλγ,σ(β)(z)=βΓ(γ+1−1/β)∫1∞(tβ−1)γ−1/βtσe−ztdtgeneralising Tricomi confluent hypergeometric function and modified Bessel function of the third kind. The full asymptotic representations for λγ,σ(β)(z) at zero and infinity are established. Applications are given to obtain full asymptotic expansions near zero and infinity for the Liouville fractional integral(I−αf)(x)=1Γ(α)∫x∞f(t)dt(t−x)1−α(x>0;α∈C,Re(α)>0)and for the Erdelyi–Kober-type fractional integral(I−;β,ηαf)(x)=βxβηΓ(α)∫x∞tβ(1−α−η)−1f(t)dt(tβ−xβ)1−α(x>0;α∈C,(Re(α)>0)with β>0 and η∈C of power-exponential function f(t), and for three other fractional integrals

    Overexpression of the sodium ATPase of Saccharomyces cerevisiae: conditions for phosphorylation from ATP and Pi

    Get PDF
    AbstractThe ENA1 gene of Saccharomyces cerevisiae encodes a putative ATPase necessary for Na+ efflux. Plasma membranes and intracellular membranes of a yeast strain overexpressing the ENA1 gene contain significant amounts of ENA1 protein. Consequences of the overexpression with reference to the wild-type strain are: (1) a 5-fold higher content of the ENA1-protein in plasma membranes; (2) lower Na+ and Li+ effluxes; (3) slightly higher Na+ tolerance; and (4) much higher Li+ tolerance. The ENA1-specific ATPase activity in plasma membrane preparations of the overexpressing strain was low, but an ENA1 phosphoprotein was clearly detected when the plasma membranes were exposed to ATP in the presence of Na+ or to Pi in the absence of Na+. The characteristics of this phosphoprotein, which correspond to the acyl phosphate intermediaries of P-type ATPases, the absolute requirement of Na+ or other alkali cations for phosphorylation, and the Na+ and pH dependence of phosphorylation from ATP and Pi suggest that the product of the ENA1 gene may be a Na,H-ATPase, which can also pump other alkali cations. The role of the intracellular membranes structures produced with the overexpression of ENA1 in Na+ and Li+ tolerances and the existence of a β-subunit of the ENA1 ATPase are discussed

    Method for monitoring urea and ammonia in wine and must by flow injection-pervaporation

    Get PDF
    An easy to automate flow-injection-pervaporation method for monitoring urea and ammonia in must and wine was developed. The method is based on separation of the ammonia from the sample matrix by pervaporation followed by its reaction with salicylate, hypochlorite and nitroprusside to form a diazonium salt with maximum absorption at 647 nm. Conversion of urea into ammonia catalysed by urease was mandatory before pervaporation. After optimisation by either the univariate or multivariate approaches as required, the linear range was established (between 0 and 25 mg l-1) for both analytes. Then, the assessment of the proposed method versus a reference one for urea and ammonia was studied in terms of repeatability (0.52 mg l-1 and 0.43 mg l-1, respectively), reproducibility (1.34 mg l-1 and 1.21 mg l-1, respectively), detection and quantification limits (LOD=0.9 and 0.6 mg l-1, LQ=1.02 and 0.67 mg l-1, respectively) and traceability. The sample throughput was 16 samples h-1. The method can be applied to the monitoring of the target analytes in must and young wine in order to control their contents, preventing formation of ethyl carbamate

    Electronic States in Diffused Quantum Wells

    Full text link
    In the present study we calculate the energy values and the spatial distributions of the bound electronic states in some diffused quantum wells. The calculations are performed within the virtual crystal approximation, sp3ssp^3 s^* spin dependent empirical tight-binding model and the surface Green function matching method. A good agreement is found between our results and experimental data obtained for AlGaAs/GaAs quantum wells with thermally induced changes in the profile at the interfaces. Our calculations show that for diffusion lengths LD=20÷100L_{D}=20\div100 {\AA} the transition (C3-HH3) is not sensitive to the diffusion length, but the transitions (C1-HH1), (C1-LH1), (C2-HH2) and (C2-LH2) display large "blue shifts" as L_{D} increases. For diffusion lengths LD=0÷20L_{D}=0\div20 {\AA} the transitions (C1-HH1) and (C1-LH1) are less sensitive to the L_{D} changes than the (C3-HH3) transition. The observed dependence is explained in terms of the bound states spatial distributions.Comment: ReVTeX file, 7pp., no macros, 4 figures available on the reques

    Microstructure and secondary phases in coevaporated CuInS2 films: Dependence on growth temperature and chemical composition

    Get PDF
    The microstructure of CuInS2-(CIS2) polycrystalline films deposited onto Mo-coated glass has been analyzed by Raman scattering, Auger electron spectroscopy (AES), transmission electron microscopy, and x-ray diffraction techniques. Samples were obtained by a coevaporation procedure that allows different Cu-to-In composition ratios (from Cu-rich to Cu-poor films). Films were grown at different temperatures between 370 and 520-°C. The combination of micro-Raman and AES techniques onto Ar+-sputtered samples has allowed us to identify the main secondary phases from Cu-poor films such as CuIn5S8 (at the central region of the layer) and MoS2 (at the CIS2/Mo interface). For Cu-rich films, secondary phases are CuS at the surface of as-grown layers and MoS2 at the CIS2/Mo interface. The lower intensity of the MoS2 modes from the Raman spectra measured at these samples suggests excess Cu to inhibit MoS2 interface formation. Decreasing the temperature of deposition to 420-°C leads to an inhibition in observing these secondary phases. This inhibition is also accompanied by a significant broadening and blueshift of the main A1 Raman mode from CIS2, as well as by an increase in the contribution of an additional mode at about 305 cm-1. The experimental data suggest that these effects are related to a decrease in structural quality of the CIS2 films obtained under low-temperature deposition conditions, which are likely connected to the inhibition in the measured spectra of secondary-phase vibrational modes

    Separation of n-hexane - ethyl acetate mixture by azeotropic batch distillation with heterogeneous entrainers

    Get PDF
    In this article, a systematic study of the separation of the n-hexane - ethyl acetate mixture with an entrainer by heterogeneous azeotropic batch distillation is performed. Based upon the thermodynamic behaviour of the ternary mixtures, potential entrainers partially miscible with one or two original azeotropic components are chosen. In all cases, the entrainer adds a heterogeneous binary or ternary azeotrope that is the lowest boiling point in the ternary diagram. Therefore, it leaves the column by the overhead stream which is subcooled to get two liquid phases in the decanter. The phase with the highest amount of the original component is removed as distillate product whereas the entrainer – rich phase is continuously refluxed to the column. Considering methanol, acetonitrile, water and nitromethane as heterogeneous entrainers, screening was performed based on the composition of the unstable heteroazeotropic mixture, the ratio of both liquid phases in the condensed top vapour and the purity of the distillate product determined by the liquid – liquid envelope at the decanter temperature. The process feasibility analysis is validated by using rigorous simulation with the batch process simulator ProSimBatch. Simulation results are then corroborated in a bench experimental column for the selected entrainer, showing several advantages of heterogeneous batch distillation compared to homogeneous systems
    corecore