9,405 research outputs found

    Coincidence Problem in Cyclic Phantom Models of the Universe

    Full text link
    We examine cyclic phantom models for the universe, in which the universe is dominated sequentially by radiation, matter, and a phantom dark energy field, followed by a standard inflationary phase. Since this cycle repeats endlessly, the Universe spends a substantial portion of its lifetime in a state for which the matter and dark energy densities have comparable magnitudes, thus ameliorating the coincidence problem. We calculate the fraction of time that the universe spends in such a coincidental state and find that it is nearly the same as in the case of a phantom model with a future big rip. In the limit where the dark energy equation of state parameter, w, is close to -1, we show that the fraction of time, f, for which the ratio of the dark energy density to the matter density lies between r_1 and r_2, is f = -(1+w) ln [(\sqrt{r_2} + \sqrt{1+r_2})/(\sqrt{r_1} + \sqrt{1+r_1})].Comment: 4 pages, no figures, discussion and references adde

    Contractual Versus Non-Contractual Trade: The Role of Institutions in China

    Get PDF
    Recent research has demonstrated the importance of institutional quality at the country level for both the volume of trade and the ability to trade in differentiated goods that rely on contract enforcement. This paper takes advantage of cross-provincial variation in institutional quality in China, and export data that distinguishes between foreign and domestic exporters and processing versus ordinary trade, to show that institutional quality is a significant factor in determining Chinese provincial export patterns. Institutions matter more for processing trade, and more for foreign firms, just as we would expect from a greater reliance on contracts in these cases.

    Exact Potts Model Partition Functions for Strips of the Honeycomb Lattice

    Full text link
    We present exact calculations of the Potts model partition function Z(G,q,v)Z(G,q,v) for arbitrary qq and temperature-like variable vv on nn-vertex strip graphs GG of the honeycomb lattice for a variety of transverse widths equal to LyL_y vertices and for arbitrarily great length, with free longitudinal boundary conditions and free and periodic transverse boundary conditions. These partition functions have the form Z(G,q,v)=j=1NZ,G,λcZ,G,j(λZ,G,j)mZ(G,q,v)=\sum_{j=1}^{N_{Z,G,\lambda}} c_{Z,G,j}(\lambda_{Z,G,j})^m, where mm denotes the number of repeated subgraphs in the longitudinal direction. We give general formulas for NZ,G,jN_{Z,G,j} for arbitrary LyL_y. We also present plots of zeros of the partition function in the qq plane for various values of vv and in the vv plane for various values of qq. Explicit results for partition functions are given in the text for Ly=2,3L_y=2,3 (free) and Ly=4L_y=4 (cylindrical), and plots of partition function zeros are given for LyL_y up to 5 (free) and Ly=6L_y=6 (cylindrical). Plots of the internal energy and specific heat per site for infinite-length strips are also presented.Comment: 39 pages, 34 eps figures, 3 sty file

    2,2-Bis[(2-halo-4-aminophenoxy)phenyl]-hexafluoropropane

    Get PDF
    There are provided the aromatic diamines 2,2-bis-[(2-halo-4-aminophenoxy)-phenyl]hexafluoropropane, where the attached ortho halogen is preferably chlorine, and 4,4'-bis(4-aminophenoxy)biphenyl, as novel monomers for polyimide polymerizations. The former, when reacted with 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride, provides a polyimide having exceptional high-temperature performance. The latter diamine is a low-cost monomer for polyimide production

    High-temperature polyimides prepared from 2,2-bis-[(2-halo-4-aminophenoxy)-phenyl]hexafluoropropane

    Get PDF
    There are provided the aromatic diamines 2,2-bis-[(2-halo-4-aminophenoxy)-phenyl]hexafluoropropane, where the attached ortho halogen is preferably chlorine, and 4,4'-bis(4-aminophenoxy)biphenyl, as novel monomers for polyimide polymerizations. The former, when reacted with 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride, provides a polyimide having exceptional high-temperature performance. The latter diamine is a low-cost monomer for polyimide production

    Fiber reinforced thermoplastic resin matrix composites

    Get PDF
    Polyimide polymer composites having a combination of enhanced thermal and mechanical properties even when subjected to service temperatures as high as 700.degree. F. are described. They comprise (a) from 10 to 50 parts by weight of a thermoplastic polyimide resin prepared from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane and (b) from 90 to 50 parts by weight of continuous reinforcing fibers, the total of (a) and (b) being 100 parts by weight. Composites based on polyimide resin formed from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane and pyromellitic dianhydride and continuous carbon fibers retained at least about 50% of their room temperature shear strength after exposure to 700.degree. F. for a period of 16 hours in flowing air. Preferably, the thermoplastic polyimide resin is formed in situ in the composite material by thermal imidization of a corresponding amide-acid polymer prepared from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane. It is also preferred to initially size the continuous reinforcing fibers with up to about one percent by weight of an amide-acid polymer prepared from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane. In this way imidization at a suitable elevated temperature results in the in-situ formation of a substantially homogeneous thermoplastic matrix of the polyimide resin tightly and intimately bonded to the continuous fibers. The resultant composites tend to have optimum thermo-mechanical properties

    Prediction of Nontrivial Band Topology and Superconductivity in Mg2_2Pb

    Full text link
    The interplay of BCS superconductivity and nontrivial band topology is expected to give rise to opportunities for creating topological superconductors, achieved through pairing spin-filtered boundary modes via superconducting proximity effects. The thus-engineered topological superconductivity can, for example, facilitate the search for Majorana fermion quasiparticles in condensed matter systems. Here we report a first-principles study of Mg2_2Pb and predict that it should be a superconducting topological material. The band topology of Mg2_2Pb is identical to that of the archetypal quantum spin Hall insulator HgTe, while isostructural and isoelectronic Mg2_2Sn is topologically trivial; a trivial to topological transition is predicted for Mg2_2Sn1x_{1-x}Pbx_x for x~0.77. We propose that Mg2_2Pb-Mg2_2Sn quantum wells should generate robust spin-filtered edge currents in analogy to HgTe/CdTe quantum wells. In addition, our calculations predict that Mg2_2Pb should become superconducting upon electron doping. Therefore, Mg2_2Pb is expected to provide a practical material platform for studying emergent phenomena arising from the interplay of superconductivity and band topology.Comment: 5 figure

    Photoluminescence modification by high-order photonic band with abnormal dispersion in ZnO inverse opal

    Full text link
    We measured the angle- and polarization-resolved reflection and photoluminescence spectra of ZnO inverse opals. Significant enhancement of spontaneous emission is observed. The enhanced emission not only has good directionality but also can be linearly polarized. A detailed theoretical analysis and numerical simulation reveal that such enhancement is caused by the abnormal dispersion of a high-order photonic band. The frozen mode at a stationary inflection point of a dispersion curve can strongly modify the intensity, directionality and polarization of spontaneous emission.Comment: 22 pages, 11 figures, figures modified, references added, more explanation adde
    corecore