19 research outputs found

    Direct equivalence between quantum phase transition phenomena in radiation-matter and magnetic systems: scaling of entanglement

    Full text link
    We show that the quantum phase transition arising in a standard radiation-matter model (Dicke model) belongs to the same universality class as the infinitely-coordinated, transverse field XY model. The effective qubit-qubit exchange interaction is shown to be proportional to the square of the qubit-radiation coupling. A universal finite-size scaling is derived for the corresponding two-qubit entanglement (concurrence) and a size-consistent effective Hamiltonian is proposed for the qubit subsystem.Comment: 4 pages, 3 figures. Minor changes. Published versio

    Dynamical instability in kicked Bose-Einstein condensates: Bogoliubov resonances

    Full text link
    Bose-Einstein condensates subject to short pulses (`kicks') from standing waves of light represent a nonlinear analogue of the well-known chaos paradigm, the quantum kicked rotor. Previous studies of the onset of dynamical instability (ie exponential proliferation of non-condensate particles) suggested that the transition to instability might be associated with a transition to chaos. Here we conclude instead that instability is due to resonant driving of Bogoliubov modes. We investigate the excitation of Bogoliubov modes for both the quantum kicked rotor (QKR) and a variant, the double kicked rotor (QKR-2). We present an analytical model, valid in the limit of weak impulses which correctly gives the scaling properties of the resonances and yields good agreement with mean-field numerics.Comment: 8 page

    Dynamical instability in kicked Bose-Einstein condensates

    Get PDF
    Bose-Einstein condensates subject to short pulses (kicks) from standing waves of light represent a nonlinear analog of the well-known chaos paradigm, the quantum kicked rotor. Previous studies of the onset of dynamical instability (i.e., exponential proliferation of noncondensate particles) suggested that the transition to instability might be associated with a transition to chaos. Here we conclude instead that instability is due to resonant driving of Bogoliubov modes. We investigate the Bogoliubov spectrum for both the quantum kicked rotor (QKR) and a variant, the double kicked rotor (QKR-2). We present an analytical model, valid in the limit of weak impulses which correctly gives the scaling properties of the resonances and yields good agreement with mean-field numerics

    Time periodicity and dynamical stability in two-boson systems

    Full text link
    We calculate the period of recurrence of dynamical systems comprising two interacting bosons. A number of theoretical issues related to this problem are discussed, in particular, the conditions for small periodicity. The knowledge gathered in this way is then used to propose a notion of dynamical stability based on the stability of the period. Dynamical simulations show good agreement with the proposed scheme. We also apply the results to the phenomenon known as coherent population trapping and find stability conditions in this specific case.Comment: 7+ pages, 5 figure

    Optical signatures of quantum phase transitions in a light-matter system

    Get PDF
    Information about quantum phase transitions in conventional condensed matter systems, must be sought by probing the matter system itself. By contrast, we show that mixed matter-light systems offer a distinct advantage in that the photon field carries clear signatures of the associated quantum critical phenomena. Having derived an accurate, size-consistent Hamiltonian for the photonic field in the well-known Dicke model, we predict striking behavior of the optical squeezing and photon statistics near the phase transition. The corresponding dynamics resemble those of a degenerate parametric amplifier. Our findings boost the motivation for exploring exotic quantum phase transition phenomena in atom-cavity, nanostructure-cavity, and nanostructure-photonic-band-gap systems.Comment: 4 pages, 4 figure

    Coherent State Description of the Ground State in the Tavis-Cummings Model and its Quantum Phase Transitions

    Full text link
    Quantum phase transitions and observables of interest of the ground state in the Tavis-Cummings model are analyzed, for any number of atoms, by using a tensorial product of coherent states. It is found that this "trial" state constitutes a very good approximation to the exact quantum solution, in that it globally reproduces the expectation values of the matter and field observables. These include the population and dipole moments of the two-level atoms and the squeezing parameter. Agreement in the field-matter entanglement and in the fidelity measures, of interest in quantum information theory, is also found.The analysis is carried out in all three regions defined by the separatrix which gives rise to the quantum phase transitions. It is argued that this agreement is due to the gaussian structure of the probability distributions of the constant of motion and the number of photons. The expectation values of the ground state observables are given in analytic form, and the change of the ground state structure of the system when the separatrix is crossed is also studied.Comment: 38 pages, 16 figure

    Entanglement entropy in collective models

    Full text link
    We discuss the behavior of the entanglement entropy of the ground state in various collective systems. Results for general quadratic two-mode boson models are given, yielding the relation between quantum phase transitions of the system (signaled by a divergence of the entanglement entropy) and the excitation energies. Such systems naturally arise when expanding collective spin Hamiltonians at leading order via the Holstein-Primakoff mapping. In a second step, we analyze several such models (the Dicke model, the two-level BCS model, the Lieb-Mattis model and the Lipkin-Meshkov-Glick model) and investigate the properties of the entanglement entropy in the whole parameter range. We show that when the system contains gapless excitations the entanglement entropy of the ground state diverges with increasing system size. We derive and classify the scaling behaviors that can be met.Comment: 11 pages, 7 figure

    Spin-glasses in optical cavity

    Full text link
    Recent advances in nanofabrication and optical control have garnered tremendous interest in multi-qubit-cavity systems. Here we analyze a spin-glass version of such a nanostructure, solving analytically for the phase diagrams in both the matter and radiation subsystems in the replica symmetric regime. Interestingly, the resulting phase transitions turn out to be tunable simply by varying the matter-radiation coupling strength
    corecore