956 research outputs found
Role of inertia in two-dimensional deformation and breakup of a droplet
We investigate by Lattice Boltzmann methods the effect of inertia on the
deformation and break-up of a two-dimensional fluid droplet surrounded by fluid
of equal viscosity (in a confined geometry) whose shear rate is increased very
slowly. We give evidence that in two dimensions inertia is {\em necessary} for
break-up, so that at zero Reynolds number the droplet deforms indefinitely
without breaking. We identify two different routes to breakup via two-lobed and
three-lobed structures respectively, and give evidence for a sharp transition
between these routes as parameters are varied.Comment: 4 pages, 4 figure
A model problem for the initial-boundary value formulation of Einstein's field equations
In many numerical implementations of the Cauchy formulation of Einstein's
field equations one encounters artificial boundaries which raises the issue of
specifying boundary conditions. Such conditions have to be chosen carefully. In
particular, they should be compatible with the constraints, yield a well posed
initial-boundary value formulation and incorporate some physically desirable
properties like, for instance, minimizing reflections of gravitational
radiation.
Motivated by the problem in General Relativity, we analyze a model problem,
consisting of a formulation of Maxwell's equations on a spatially compact
region of spacetime with timelike boundaries. The form in which the equations
are written is such that their structure is very similar to the
Einstein-Christoffel symmetric hyperbolic formulations of Einstein's field
equations. For this model problem, we specify a family of Sommerfeld-type
constraint-preserving boundary conditions and show that the resulting
initial-boundary value formulations are well posed. We expect that these
results can be generalized to the Einstein-Christoffel formulations of General
Relativity, at least in the case of linearizations about a stationary
background.Comment: 25 page
Global Solutions for Incompressible Viscoelastic Fluids
We prove the existence of both local and global smooth solutions to the
Cauchy problem in the whole space and the periodic problem in the n-dimensional
torus for the incompressible viscoelastic system of Oldroyd-B type in the case
of near equilibrium initial data. The results hold in both two and three
dimensional spaces. The results and methods presented in this paper are also
valid for a wide range of elastic complex fluids, such as magnetohydrodynamics,
liquid crystals and mixture problems.Comment: We prove the existence of global smooth solutions to the Cauchy
problem for the incompressible viscoelastic system of Oldroyd-B type in the
case of near equilibrium initial dat
Connes distance by examples: Homothetic spectral metric spaces
We study metric properties stemming from the Connes spectral distance on
three types of non compact noncommutative spaces which have received attention
recently from various viewpoints in the physics literature. These are the
noncommutative Moyal plane, a family of harmonic Moyal spectral triples for
which the Dirac operator squares to the harmonic oscillator Hamiltonian and a
family of spectral triples with Dirac operator related to the Landau operator.
We show that these triples are homothetic spectral metric spaces, having an
infinite number of distinct pathwise connected components. The homothetic
factors linking the distances are related to determinants of effective Clifford
metrics. We obtain as a by product new examples of explicit spectral distance
formulas. The results are discussed.Comment: 23 pages. Misprints corrected, references updated, one remark added
at the end of the section 3. To appear in Review in Mathematical Physic
On the Evolution Equation for Magnetic Geodesics
In this paper we prove the existence of long time solutions for the parabolic
equation for closed magnetic geodesics.Comment: In this paper we prove the existence of long time solutions for the
parabolic equation for closed magnetic geodesic
Coexisting Pulses in a Model for Binary-Mixture Convection
We address the striking coexistence of localized waves (`pulses') of
different lengths which was observed in recent experiments and full numerical
simulations of binary-mixture convection. Using a set of extended
Ginzburg-Landau equations, we show that this multiplicity finds a natural
explanation in terms of the competition of two distinct, physical localization
mechanisms; one arises from dispersion and the other from a concentration mode.
This competition is absent in the standard Ginzburg-Landau equation. It may
also be relevant in other waves coupled to a large-scale field.Comment: 5 pages revtex with 4 postscript figures (everything uuencoded
Note on Global Regularity for 2D Oldroyd-B Fluids with Diffusive Stress
We prove global regularity of solutions of Oldroyd-B equations in 2 spatial
dimensions with spatial diffusion of the polymeric stresses
The Johnson-Segalman model with a diffusion term in Couette flow
We study the Johnson-Segalman (JS) model as a paradigm for some complex
fluids which are observed to phase separate, or ``shear-band'' in flow. We
analyze the behavior of this model in cylindrical Couette flow and demonstrate
the history dependence inherent in the local JS model. We add a simple gradient
term to the stress dynamics and demonstrate how this term breaks the degeneracy
of the local model and prescribes a much smaller (discrete, rather than
continuous) set of banded steady state solutions. We investigate some of the
effects of the curvature of Couette flow on the observable steady state
behavior and kinetics, and discuss some of the implications for metastability.Comment: 14 pp, to be published in Journal of Rheolog
Global generalized solutions for Maxwell-alpha and Euler-alpha equations
We study initial-boundary value problems for the Lagrangian averaged alpha
models for the equations of motion for the corotational Maxwell and inviscid
fluids in 2D and 3D. We show existence of (global in time) dissipative
solutions to these problems. We also discuss the idea of dissipative solution
in an abstract Hilbert space framework.Comment: 27 pages, to appear in Nonlinearit
- …