956 research outputs found

    Role of inertia in two-dimensional deformation and breakup of a droplet

    Full text link
    We investigate by Lattice Boltzmann methods the effect of inertia on the deformation and break-up of a two-dimensional fluid droplet surrounded by fluid of equal viscosity (in a confined geometry) whose shear rate is increased very slowly. We give evidence that in two dimensions inertia is {\em necessary} for break-up, so that at zero Reynolds number the droplet deforms indefinitely without breaking. We identify two different routes to breakup via two-lobed and three-lobed structures respectively, and give evidence for a sharp transition between these routes as parameters are varied.Comment: 4 pages, 4 figure

    A model problem for the initial-boundary value formulation of Einstein's field equations

    Full text link
    In many numerical implementations of the Cauchy formulation of Einstein's field equations one encounters artificial boundaries which raises the issue of specifying boundary conditions. Such conditions have to be chosen carefully. In particular, they should be compatible with the constraints, yield a well posed initial-boundary value formulation and incorporate some physically desirable properties like, for instance, minimizing reflections of gravitational radiation. Motivated by the problem in General Relativity, we analyze a model problem, consisting of a formulation of Maxwell's equations on a spatially compact region of spacetime with timelike boundaries. The form in which the equations are written is such that their structure is very similar to the Einstein-Christoffel symmetric hyperbolic formulations of Einstein's field equations. For this model problem, we specify a family of Sommerfeld-type constraint-preserving boundary conditions and show that the resulting initial-boundary value formulations are well posed. We expect that these results can be generalized to the Einstein-Christoffel formulations of General Relativity, at least in the case of linearizations about a stationary background.Comment: 25 page

    Global Solutions for Incompressible Viscoelastic Fluids

    Full text link
    We prove the existence of both local and global smooth solutions to the Cauchy problem in the whole space and the periodic problem in the n-dimensional torus for the incompressible viscoelastic system of Oldroyd-B type in the case of near equilibrium initial data. The results hold in both two and three dimensional spaces. The results and methods presented in this paper are also valid for a wide range of elastic complex fluids, such as magnetohydrodynamics, liquid crystals and mixture problems.Comment: We prove the existence of global smooth solutions to the Cauchy problem for the incompressible viscoelastic system of Oldroyd-B type in the case of near equilibrium initial dat

    A Proportional Wire Calorimeter for Magnet Pole Tips

    Full text link

    Connes distance by examples: Homothetic spectral metric spaces

    Full text link
    We study metric properties stemming from the Connes spectral distance on three types of non compact noncommutative spaces which have received attention recently from various viewpoints in the physics literature. These are the noncommutative Moyal plane, a family of harmonic Moyal spectral triples for which the Dirac operator squares to the harmonic oscillator Hamiltonian and a family of spectral triples with Dirac operator related to the Landau operator. We show that these triples are homothetic spectral metric spaces, having an infinite number of distinct pathwise connected components. The homothetic factors linking the distances are related to determinants of effective Clifford metrics. We obtain as a by product new examples of explicit spectral distance formulas. The results are discussed.Comment: 23 pages. Misprints corrected, references updated, one remark added at the end of the section 3. To appear in Review in Mathematical Physic

    On the Evolution Equation for Magnetic Geodesics

    Full text link
    In this paper we prove the existence of long time solutions for the parabolic equation for closed magnetic geodesics.Comment: In this paper we prove the existence of long time solutions for the parabolic equation for closed magnetic geodesic

    Coexisting Pulses in a Model for Binary-Mixture Convection

    Full text link
    We address the striking coexistence of localized waves (`pulses') of different lengths which was observed in recent experiments and full numerical simulations of binary-mixture convection. Using a set of extended Ginzburg-Landau equations, we show that this multiplicity finds a natural explanation in terms of the competition of two distinct, physical localization mechanisms; one arises from dispersion and the other from a concentration mode. This competition is absent in the standard Ginzburg-Landau equation. It may also be relevant in other waves coupled to a large-scale field.Comment: 5 pages revtex with 4 postscript figures (everything uuencoded

    The Johnson-Segalman model with a diffusion term in Couette flow

    Full text link
    We study the Johnson-Segalman (JS) model as a paradigm for some complex fluids which are observed to phase separate, or ``shear-band'' in flow. We analyze the behavior of this model in cylindrical Couette flow and demonstrate the history dependence inherent in the local JS model. We add a simple gradient term to the stress dynamics and demonstrate how this term breaks the degeneracy of the local model and prescribes a much smaller (discrete, rather than continuous) set of banded steady state solutions. We investigate some of the effects of the curvature of Couette flow on the observable steady state behavior and kinetics, and discuss some of the implications for metastability.Comment: 14 pp, to be published in Journal of Rheolog

    Global generalized solutions for Maxwell-alpha and Euler-alpha equations

    Full text link
    We study initial-boundary value problems for the Lagrangian averaged alpha models for the equations of motion for the corotational Maxwell and inviscid fluids in 2D and 3D. We show existence of (global in time) dissipative solutions to these problems. We also discuss the idea of dissipative solution in an abstract Hilbert space framework.Comment: 27 pages, to appear in Nonlinearit
    corecore