4,292 research outputs found
All Your Works Are Belong to Us: New Frontiers for the Derivative Work Right in Video Games
In copyright law, the author of an original work has the exclusive right to prepare further works derivative of that original. Video game developers’ works are protected by the Copyright Act. As video games take advantage of more advanced technology, however, players are doing more creative, interesting, and original things when they play games. Certain things players do create independent economic value and are the kinds of acts of original authorship our copyright system is designed to encourage. However, since the author of the video game is entitled to the full panoply of rights under the laws of the American copyright regime, they own the exclusive right to prepare works “derivative” of that game.
This Article has both descriptive and normative goals. Its descriptive goals are to outline the current legal trends in the video game space and to demonstrate the huge economic stakes at play. Its normative goals are to offer a number of different ways of explaining how derivative works of video games are created and to suggest several modes of understanding how cases where ownership of these works is disputed should be decided. These modes include philosophical thought experiments, critical analysis of what exactly a game is, analysis of what kind of game underlies the second order work in question, and application of the liability/property rule framework from law and economics literature
Deep Learning How to Fit an Intravoxel Incoherent Motion Model to Diffusion-Weighted MRI
Purpose: This prospective clinical study assesses the feasibility of training
a deep neural network (DNN) for intravoxel incoherent motion (IVIM) model
fitting to diffusion-weighted magnetic resonance imaging (DW-MRI) data and
evaluates its performance. Methods: In May 2011, ten male volunteers (age
range: 29 to 53 years, mean: 37 years) underwent DW-MRI of the upper abdomen on
1.5T and 3.0T magnetic resonance scanners. Regions of interest in the left and
right liver lobe, pancreas, spleen, renal cortex, and renal medulla were
delineated independently by two readers. DNNs were trained for IVIM model
fitting using these data; results were compared to least-squares and Bayesian
approaches to IVIM fitting. Intraclass Correlation Coefficients (ICC) were used
to assess consistency of measurements between readers. Intersubject variability
was evaluated using Coefficients of Variation (CV). The fitting error was
calculated based on simulated data and the average fitting time of each method
was recorded. Results: DNNs were trained successfully for IVIM parameter
estimation. This approach was associated with high consistency between the two
readers (ICCs between 50 and 97%), low intersubject variability of estimated
parameter values (CVs between 9.2 and 28.4), and the lowest error when compared
with least-squares and Bayesian approaches. Fitting by DNNs was several orders
of magnitude quicker than the other methods but the networks may need to be
re-trained for different acquisition protocols or imaged anatomical regions.
Conclusion: DNNs are recommended for accurate and robust IVIM model fitting to
DW-MRI data. Suitable software is available at (1)
OVI, NV and CIV in the Galactic Halo: II. Velocity-Resolved Observations with Hubble and FUSE
We present a survey of NV and OVI (and where available CIV) in the Galactic
halo, using data from the Far Ultraviolet Spectroscopic Explorer (FUSE) and the
Hubble Space Telescope (HST) along 34 sightlines. These ions are usually
produced in nonequilibrium processes such as shocks, evaporative interfaces, or
rapidly cooling gas, and thus trace the dynamics of the interstellar medium.
Searching for global trends in integrated and velocity-resolved column density
ratios, we find large variations in most measures, with some evidence for a
systematic trend of higher ionization (lower NV/OVI column density ratio) at
larger positive line-of-sight velocities. The slopes of log[N(NV)/N(OVI)] per
unit velocity range from -0.015 to +0.005, with a mean of
-0.0032+/-0.0022(r)+/-0.0014(sys) dex/(km/s). We compare this dataset with
models of velocity-resolved high-ion signatures of several common physical
structures. The dispersion of the ratios, OVI/NV/CIV, supports the growing
belief that no single model can account for hot halo gas, and in fact some
models predict much stronger trends than are observed. It is important to
understand the signatures of different physical structures to interpret
specific lines of sight and future global surveys.Comment: ApJ in press 43 pages, 22 fig
2-D and 3-D Radiation Transfer Models of High-Mass Star Formation
2-D and 3-D radiation transfer models of forming stars generally produce
bluer 1-10 micron colors than 1-D models of the same evolutionary state and
envelope mass. Therefore, 1-D models of the shortwave radiation will generally
estimate a lower envelope mass and later evolutionary state than
multidimensional models. 1-D models are probably reasonable for very young
sources, or longwave analysis (wavelengths > 100 microns). In our 3-D models of
high-mass stars in clumpy molecular clouds, we find no correlation between the
depth of the 10 micron silicate feature and the longwave (> 100 micron) SED
(which sets the envelope mass), even when the average optical extinction of the
envelope is >100 magnitudes. This is in agreement with the observations of
Faison et al. (1998) of several UltraCompact HII (UCHII) regions, suggesting
that many of these sources are more evolved than embedded protostars.
We have calculated a large grid of 2-D models and find substantial overlap
between different evolutionary states in the mid-IR color-color diagrams. We
have developed a model fitter to work in conjunction with the grid to analyze
large datasets. This grid and fitter will be expanded and tested in 2005 and
released to the public in 2006.Comment: 10 pages, 8 figures, to appear in the proceedings of IAU Symp 227,
Massive Star Birth: A Crossroads of Astrophysics, (Cesaroni R., Churchwell
E., Felli M., Walmsley C. editors
Influence of coating on the thermal resistance of a Ni-Based superalloy
In this paper, the influence of M-CrAlY polycrystalline coating on the thermal fatigue behavior of a Nickel-base superalloy has been investigated. A special device using a rotating bending machine and two thermal sources has been used to perform thermo-mechanical tests. The two thermal sources have been set to obtain temperature variations between 750 and 1120 °C in the central part of the specimens, with a frequency of 0.1 Hz. The results showed a deleterious effect of the coating on the fatigue resistance. Numerical simulations have been carried out on SAMCEF to determine the thermo-mechanical field of the so-tested specimens. Calculated thermo-mechanical cycles of critical sites are associated with microstructure evolution and damage by cracking observed on the specimens. Damage mechanisms related to the presence of coating are discussed
- …