4,182 research outputs found

    Slice Stretching Effects for Maximal Slicing of a Schwarzschild Black Hole

    Full text link
    Slice stretching effects such as slice sucking and slice wrapping arise when foliating the extended Schwarzschild spacetime with maximal slices. For arbitrary spatial coordinates these effects can be quantified in the context of boundary conditions where the lapse arises as a linear combination of odd and even lapse. Favorable boundary conditions are then derived which make the overall slice stretching occur late in numerical simulations. Allowing the lapse to become negative, this requirement leads to lapse functions which approach at late times the odd lapse corresponding to the static Schwarzschild metric. Demanding in addition that a numerically favorable lapse remains non-negative, as result the average of odd and even lapse is obtained. At late times the lapse with zero gradient at the puncture arising for the puncture evolution is precisely of this form. Finally, analytic arguments are given on how slice stretching effects can be avoided. Here the excision technique and the working mechanism of the shift function are studied in detail.Comment: 16 pages, 4 figures, revised version including a study on how slice stretching can be avoided by using excision and/or shift

    Reducing AC impedance measurement errors caused by the DC voltage dependence of broadband high-voltage bias-tees

    Get PDF
    During the AC impedance characterization of devices, from the kHz-range up to the GHz-range, accuracy can be lost when a DC voltage is applied. Commercial high-voltage broadband bias-tees are often voltage-dependent, which can cause inaccuracies at low frequencies. A calibration technique with applied bias significantly improves the measurement accuracy.\ud Additionally, a bias-tee has been developed with a voltageindependent capacitor, suitable for DC voltages up to 500 V showing excellent performance up to several gigahertz. PIN diode limiters protect the measurement equipment from damage in case of a device breakdown.\u

    Few-body precursor of the Higgs mode in a superfluid Fermi gas

    Full text link
    We demonstrate that an undamped few-body precursor of the Higgs mode can be investigated in a harmonically trapped Fermi gas. Using exact diagonalisation, the lowest monopole mode frequency is shown to depend non-monotonically on the interaction strength, having a minimum in a crossover region. The minimum deepens with increasing particle number, reflecting that the mode is the few-body analogue of a many-body Higgs mode in the superfluid phase, which has a vanishing frequency at the quantum phase transition point to the normal phase. We show that this mode mainly consists of coherent excitations of time-reversed pairs, and that it can be selectively excited by modulating the interaction strength, using for instance a Feshbach resonance in cold atomic gases.Comment: 9 pages, 7 figure

    Slice Stretching at the Event Horizon when Geodesically Slicing the Schwarzschild Spacetime with Excision

    Get PDF
    Slice-stretching effects are discussed as they arise at the event horizon when geodesically slicing the extended Schwarzschild black-hole spacetime while using singularity excision. In particular, for Novikov and isotropic spatial coordinates the outward movement of the event horizon (``slice sucking'') and the unbounded growth there of the radial metric component (``slice wrapping'') are analyzed. For the overall slice stretching, very similar late time behavior is found when comparing with maximal slicing. Thus, the intuitive argument that attributes slice stretching to singularity avoidance is incorrect.Comment: 5 pages, 2 figures, published version including minor amendments suggested by the refere

    Interplay of frequency-synchronization with noise: current resonances, giant diffusion and diffusion-crests

    Full text link
    We elucidate how the presence of noise may significantly interact with the synchronization mechanism of systems exhibiting frequency-locking. The response of these systems exhibits a rich variety of behaviors, such as resonances and anti-resonances which can be controlled by the intensity of noise. The transition between different locked regimes provokes the development of a multiple enhancement of the effective diffusion. This diffusion behavior is accompanied by a crest-like peak-splitting cascade when the distribution of the lockings is self-similar, as it occurs in periodic systems that are able to exhibit a Devil's staircase sequence of frequency-lockings.Comment: 7 pages, 6 figures, epl.cls. Accepted for publication in Europhysics Letter

    INFORMATION ON AN UNKNOWN PROBABILITY CONTAINED IN RELATIVE FREQUENCY

    Get PDF

    Nonequilibrium coupled Brownian phase oscillators

    Full text link
    A model of globally coupled phase oscillators under equilibrium (driven by Gaussian white noise) and nonequilibrium (driven by symmetric dichotomic fluctuations) is studied. For the equilibrium system, the mean-field state equation takes a simple form and the stability of its solution is examined in the full space of order parameters. For the nonequilbrium system, various asymptotic regimes are obtained in a closed analytical form. In a general case, the corresponding master equations are solved numerically. Moreover, the Monte-Carlo simulations of the coupled set of Langevin equations of motion is performed. The phase diagram of the nonequilibrium system is presented. For the long time limit, we have found four regimes. Three of them can be obtained from the mean-field theory. One of them, the oscillating regime, cannot be predicted by the mean-field method and has been detected in the Monte-Carlo numerical experiments.Comment: 9 pages 8 figure

    Dipolar particles in a double-trap confinement: Response to tilting the dipolar orientation

    Full text link
    We analyze the microscopic few-body properties of dipolar particles confined in two parallel quasi-one-dimensional harmonic traps. In particular, we show that an adiabatic rotation of the dipole orientation about the trap axes can drive an initially non-localized few-fermion state into a localized state with strong inter-trap pairing. For an instant, non-adiabatic rotation, however, localization is inhibited and a highly excited state is reached. This state may be interpreted as the few-body analog of a super-Tonks-Girardeau state, known from one-dimensional systems with contact interactions
    • 

    corecore