2,301 research outputs found

    Singularity: Raychaudhuri Equation once again

    Get PDF
    I first recount Raychaudhuri's deep involvement with the singularity problem in general relativity. I then argue that precisely the same situation has arisen today in loop quantum cosmology as obtained when Raychaudhuri discovered his celebrated equation. We thus need a new analogue of the Raychaudhuri equation in quantum gravity.Comment: 11 pages, Contribution to Special issue of Pramana on Raychaudhuri Equation at Cross-roads, edited by Naresh Dadhich, Pankaj Joshi and Probir Ro

    Temperature dependence of the resistance of metallic nanowires (diameter \geq 15 nm): Applicability of Bloch-Gr\"{u}neisen theorem

    Get PDF
    We have measured the resistances (and resistivities) of Ag and Cu nanowires of diameters ranging from 15nm to 200nm in the temperature range 4.2K-300K with the specific aim to assess the applicability of the Bloch-Gr\"{u}neisen formula for electron phonon resistivity in these nanowires. The wires were grown within polymeric templates by electrodeposition. We find that in all the samples the resistance reaches a residual value at T=4.2K and the temperature dependence of resistance can be fitted to the Bloch-Gr\"{u}neisen formula in the entire temperature range with a well defined transport Debye temperature (ΘR\Theta_{R}). The value of Debye temperature obtained from the fits lie within 8% of the bulk value for Ag wires of diameter 15nm while for Cu nanowires of the same diameter the Debye temperature is significantly lesser than the bulk value. The electron-phonon coupling constants (measured by αelph\alpha_{el-ph} or αR\alpha_{R}) in the nanowires were found to have the same value as that of the bulk. The resistivities of the wires were seen to increase as the wire diameter was decreased. This increase in the resistivity of the wires may be attributed to surface scattering of conduction electrons. The specularity p was estimated to be about 0.5. The observed results allow us to obtain the resistivities exactly from the resistance and gives us a method of obtaining the exact numbers of wires within the measured array (grown within the template).Comment: 9 pages, 10 figure

    A Minimal Model of Signaling Network Elucidates Cell-to-Cell Stochastic Variability in Apoptosis

    Get PDF
    Signaling networks are designed to sense an environmental stimulus and adapt to it. We propose and study a minimal model of signaling network that can sense and respond to external stimuli of varying strength in an adaptive manner. The structure of this minimal network is derived based on some simple assumptions on its differential response to external stimuli. We employ stochastic differential equations and probability distributions obtained from stochastic simulations to characterize differential signaling response in our minimal network model. We show that the proposed minimal signaling network displays two distinct types of response as the strength of the stimulus is decreased. The signaling network has a deterministic part that undergoes rapid activation by a strong stimulus in which case cell-to-cell fluctuations can be ignored. As the strength of the stimulus decreases, the stochastic part of the network begins dominating the signaling response where slow activation is observed with characteristic large cell-to-cell stochastic variability. Interestingly, this proposed stochastic signaling network can capture some of the essential signaling behaviors of a complex apoptotic cell death signaling network that has been studied through experiments and large-scale computer simulations. Thus we claim that the proposed signaling network is an appropriate minimal model of apoptosis signaling. Elucidating the fundamental design principles of complex cellular signaling pathways such as apoptosis signaling remains a challenging task. We demonstrate how our proposed minimal model can help elucidate the effect of a specific apoptotic inhibitor Bcl-2 on apoptotic signaling in a cell-type independent manner. We also discuss the implications of our study in elucidating the adaptive strategy of cell death signaling pathways.Comment: 9 pages, 6 figure

    Using Jet Substructure at the LHC to Search for the Light Higgs Bosons of the CP-Violating MSSM

    Full text link
    The CP-violating version of the Minimal Supersymmetric Standard Model (MSSM) is an example of a model where experimental data do not preclude the presence of light Higgs bosons in the range around 10 -- 110 GeV. Such light Higgs bosons, decaying almost wholly to b-bbar pairs, may be copiously produced at the LHC, but would remain inaccessible to conventional Higgs searches because of intractable QCD backgrounds. We demonstrate that a significant number of these light Higgs bosons would be boosted strongly enough for the pair of daughter bb-jet pairs to appear as a single `fat' jet with substructure. Tagging such jets could extend the discovery potential at the LHC into the hitherto-inaccessible region for light Higgs bosons.Comment: LaTeX, 33 pages, 5 eps figures and 5 tables embedded. minor changes, to appear in Physical Review

    On the dual interpretation of zero-curvature Friedmann-Robertson-Walker models

    Get PDF
    Two possible interpretations of FRW cosmologies (perfect fluid or dissipative fluid)are considered as consecutive phases of the system. Necessary conditions are found, for the transition from perfect fluid to dissipative regime to occur, bringing out the conspicuous role played by a particular state of the system (the ''critical point '').Comment: 13 pages Latex, to appear in Class.Quantum Gra

    Temperature dependence of transport spin polarization in NdNi5 measured using Point Contact Andreev reflection

    Full text link
    We report a study in which Point contact Andreev reflection (PCAR) spectroscopy using superconducting Nb tip has been carried out on NdNi5, a ferromagnet with a Curie temperature of TC~7.7K. The measurements were carried out over a temperature range of 2-9K which spans across the ferromagnetic transition temperature. From an analysis of the spectra, we show that (i) the temperature dependence of the extracted value of transport spin polarization closely follows the temperature dependence of the spontaneous magnetization; (ii) the superconducting quasiparticle lifetime shows a large decrease close to the Curie temperature of the ferromagnet. We attribute the latter to the presence of strong ferromagnetic spin fluctuations in the ferromagnet close to the ferromagnetic transition temperature.Comment: pdf file including figures-Typographical error and errors in references correcte

    Investigation of the effect of microstructure and grain boundaries in nanostructured CMR thin films using scanning tunneling microscopy (STM) and local conductance map (LCMAP)

    Get PDF
    We have investigated the spatially resolved local electronic properties of a nanostructured film of a colossal magnetoresistive (CMR) material by local conductance mapping (LCMAP) using a variable temperature scanning tunneling microscope (STM) operating in a magnetic field. The nanostructured thin films (thickness ≈500 nm) of the CMR material La0.67Sr0.33MnO3 (LSMO) on silicon substrates were prepared using chemical solution deposition (CSD) process. These films have a large density of natural incoherent grain boundaries (GBs) which leads to significantly different behavior compared to oriented and epitaxial films of the same composition. Due to the presence of the GBs, these films show substantial low field magnetoresistance (LFMR) followed by a slower and almost linear decrease at higher fields and this is found to be strictly dependent on particle size. Most of the mechanisms proposed to explain the LFMR in the GB are based on tunneling through the GB. The purpose of this study is to use different STM based techniques to image these inhomogeneities and quantify them to the extent possible. In particular, we study the effect of grain size and the grain boundaries and their role in the electrical transport in nanostructured films of CMR materials

    Magnetoresistance of metallic perovskite oxide LaNiO3δ_{3-\delta}

    Full text link
    We report a study of the magnetoresistance (MR) of the metallic perovskite oxide LaNiO3δ_{3-\delta} as a function of the oxygen stoichiometry δ\delta (δ\delta \leq 0.14), magnetic field (H 6T\leq 6T) and temperature (1.5K \leq T \leq 25K). We find a strong dependence of the nature of MR on the oxygen stoichiometry. The MR at low temperatures change from positive to negative as the sample becomes more oxygen deficient (i.e, δ\delta increases). Some of the samples which are more resistive, show a resistivity minima at TminT_{min} \approx 20K. We find that in these samples the MR is positive at T > TminT_{min} and negative for T < TminT_{min}. We conclude that in the absence of strong magnetic interaction, the negative MR in these oxides can arise from weak localisation effects.Comment: 10 pages in REVTeX format, 4 eps fig

    A GEANT-based study of atmospheric neutrino oscillation parameters at INO

    Get PDF
    We have studied the dependence of the allowed space of the atmospheric neutrino oscillation parameters on the time of exposure for a magnetized Iron CALorimeter (ICAL) detector at the India-based Neutrino Observatory (INO). We have performed a Monte Carlo simulation for a 50 kTon ICAL detector generating events by the neutrino generator NUANCE and simulating the detector response by GEANT. A chi-square analysis for the ratio of the up-going and down-going neutrinos as a function of L/EL/E is performed and the allowed regions at 90% and 99% CL are displayed. These results are found to be better than the current experimental results of MINOS and Super-K. The possibilities of further improvement have also been discussed.Comment: 8 pages, 13 figures, a new figure added, version accepted in IJMP
    corecore