4,483 research outputs found
Diffusion at constant speed in a model phase space
We reconsider the problem of diffusion of particles at constant speed and
present a generalization of the Telegrapher process to higher dimensional
stochastic media (), where the particle can move along directions.
We derive the equations for the probability density function using the
``formulae of differentiation'' of Shapiro and Loginov. The model is an
advancement over similiar models of photon migration in multiply scattering
media in that it results in a true diffusion at constant speed in the limit of
large dimensions.Comment: Final corrected version RevTeX, 6 pages, 1 figur
Near Field Lenses in Two Dimensions
It has been shown that a slab of materials with refractive index = -1 behaves
like a perfect lens focussing all light to an exact electromagnetic copy of an
object. The original lens is limited to producing images the same size as the
object, but here we generalise the concept so that images can be magnified. For
two dimensional systems, over distances much shorter than the free space
wavelength, we apply conformal transformations to the original parallel sided
slab generating a variety of new lenses. Although the new lenses are not
`perfect' they are able to magnify two dimensional objects. The results apply
equally to imaging of electric or magnetic sub wavelength objects in two
dimensions. The concepts have potential applications ranging from microwave
frequencies to the visible.Comment: PDF fil
Imaging the Near Field
In an earlier paper we introduced the concept of the perfect lens which
focuses both near and far electromagnetic fields, hence attaining perfect
resolution. Here we consider refinements of the original prescription designed
to overcome the limitations of imperfect materials. In particular we show that
a multi-layer stack of positive and negative refractive media is less sensitive
to imperfections. It has the novel property of behaving like a fibre-optic
bundle but one that acts on the near field, not just the radiative component.
The effects of retardation are included and minimized by making the slabs
thinner. Absorption then dominates image resolution in the near-field. The
deleterious effects of absorption in the metal are reduced for thinner layers.Comment: RevTeX, (9 pages, 8 figures
Complete controllability of quantum systems
Sufficient conditions for complete controllability of -level quantum
systems subject to a single control pulse that addresses multiple allowed
transitions concurrently are established. The results are applied in particular
to Morse and harmonic-oscillator systems, as well as some systems with
degenerate energy levels. Morse and harmonic oscillators serve as models for
molecular bonds, and the standard control approach of using a sequence of
frequency-selective pulses to address a single transition at a time is either
not applicable or only of limited utility for such systems.Comment: 8 pages, expanded and revised versio
Atomic-scale coexistence of short-range magnetic order and superconductivity in FeSeTe
The ground state of the parent compounds of many high temperature
superconductors is an antiferromagnetically (AFM) ordered phase, where
superconductivity emerges when the AFM phase transition is suppressed by doping
or application of pressure. This behaviour implies a close relation between the
two orders. Understanding the interplay between them promises a better
understanding of how the superconducting condensate forms from the AFM ordered
background. Here we explore this relation in real space at the atomic scale
using low temperature spin-polarized scanning tunneling microscopy (SP-STM) and
spectroscopy. We investigate the transition from antiferromagnetically ordered
via the spin glass phase in
to superconducting
. In
we observe an
atomic-scale coexistence of superconductivity and short-ranged bicollinear
antiferromagnetic order.Comment: 7 pages, 6 figure
A spherical perfect lens
It has been recently proved that a slab of negative refractive index material
acts as a perfect lens in that it makes accessible the sub-wavelength image
information contained in the evanescent modes of a source. Here we elaborate on
perfect lens solutions to spherical shells of negative refractive material
where magnification of the near-field images becomes possible. The negative
refractive materials then need to be spatially dispersive with and . We concentrate on lens-like solutions for the
extreme near-field limit. Then the conditions for the TM and TE polarized modes
become independent of and respectively.Comment: Revtex4, 9 pages, 2 figures (eps
- …
