283 research outputs found
Visual Representations of the Water Cycle in Science Textbooks
Visual representations, including photographs, sketches and schematic diagrams, are a valuable yet often neglected aspect of textbooks. Visual means of communication are particularly helpful in introducing abstract concepts in science. For effective communication, visuals and text need to be appropriately integrated within the textboo
A 2D ultrasonic array design incorporating hexagonal-shaped elements for NDE applications
Contemporary 2D Ultrasonic arrays suffer from low SNR and limited steering capabilities. Yet, there is a great desire in the industry to increase the operational frequency, in order to enhance their volumetric imaging resolution. State-of-the art arrays use an orthogonal matrix of rectangular elements as this is a natural step forward from the conventional 1D array structure. The objective of this work is to evaluate properties of triangular, rather than rectangular ceramic pillars in a 1-3 connectivity piezoelectric composite for application in a hexagonal-element 2D array. A 3MHz prototype device exploiting new hexagonal substructure have been manufactured. Measured mechanical cross-coupling level is -21.9dB between neighbouring hexagonal elements, providing validation of simulation result. Corroboration between measured and FE modelled device behaviour is demonstrated
An annular array with fiber composite microstructure for far field NDT imaging applications
This paper describes the design and fabrication of a reduced element count annular array for far field NDT imaging applications, built with a random fiber piezoelectric composite microstructure. An annular array design is considered, spatially it offers axi-symmetric layout while reducing number of array elements, which could potentially result in a significant reduction in the cost and complexity of building an ultrasonic volumetric imaging system. Modelling and preliminary experimental results are presented to evaluate the feasibility of this approach
Yang-Mills theory for bundle gerbes
Given a bundle gerbe with connection on an oriented Riemannian manifold of
dimension at least equal to 3, we formulate and study the associated Yang-Mills
equations. When the Riemannian manifold is compact and oriented, we prove the
existence of instanton solutions to the equations and also determine the moduli
space of instantons, thus giving a complete analysis in this case. We also
discuss duality in this context.Comment: Latex2e, 7 pages, some typos corrected, to appear in J. Phys. A:
Math. and Ge
Experimental and simulation characterisation of flexural vibration modes in unimorph ultrasound transducers
A unimorph flexural transducer design is proposed and tested with regard to mode shapes and frequencies. The transducers consist of a passive metal cap structure, and a thin piezoelectric disc, rigidly bonded to the inside. Extensive finite element (FE) modelling, and experimental 2D, time-resolved displacement measurements were done to characterise the transducers flexural properties, and to compare them to the analytical solutions of thin vibrating plates. Emphasis was put on characterising the passive layer of the unimorph structure, before bonding the piezoelectric element, to understand how the active element affects the behaviour of the flexing plate. A high power Nd:YAG laser was used to actuate the metal plate (non-contact), and the frequency content of the resulting displacement signal was analysed to identify the flexural modes. The non-axisymmetric modes, which are conventionally disregarded because of their unfavourable acoustic properties, were also taken into account. There was excellent agreement between the experimental results and the FE simulation data. There was good agreement with the analytical edge clamped plate model, but with some notable deviations, which have not previously been identified or commented upon. Specifically, the second axisymmetric mode is split into three separate modes, which is not explained by the traditional theory of vibrating plates
Pressure Gradient Effects on Hypersonic Cavity Flow Heating
The effect of a pressure gradient on the local heating disturbance of rectangular cavities tested at hypersonic freestream conditions has been globally assessed using the two-color phosphor thermography method. These experiments were conducted in the Langley 31-Inch Mach 10 Tunnel and were initiated in support of the Space Shuttle Return-To-Flight Program. Two blunted-nose test surface geometries were developed, including an expansion plate test surface with nearly constant negative pressure gradient and a flat plate surface with nearly zero pressure gradient. The test surface designs and flow characterizations were performed using two-dimensional laminar computational methods, while the experimental boundary layer state conditions were inferred using the measured heating distributions. Three-dimensional computational predictions of the entire model geometry were used as a check on the design process. Both open-flow and closed-flow cavities were tested on each test surface. The cavity design parameters and the test condition matrix were established using the computational predictions. Preliminary conclusions based on an analysis of only the cavity centerline data indicate that the presence of the pressure gradient did not alter the open cavity heating for laminar-entry/laminar-exit flows, but did raise the average floor heating for closed cavities. The results of these risk-reduction studies will be used to formulate a heating assessment of potential damage scenarios occurring during future Space Shuttle flights
Additive manufacture of impedance matching layers for air-coupled ultrasonic transducers
A key problem in designing an efficient ultrasonic transducer for operating in a low acoustic impedance medium such as air is the large impedance mismatch between the active piezoceramic material and the load medium. While acoustic matching layers can be added to the face of the piezoceramic, the associated manufacturing difficulties and reliability can impact upon the cost and longevity of the resultant transducer. This paper presents some preliminary investigations conducted using an additive manufacturing technique, to develop a new material system for matching layer fabrication for air-coupled ultrasonic transducers. Results to date are very encouraging, and could result in a robust, reproducible, economical and improved fabrication method for air-coupled transducers
Ultrasound sensing using the acousto-optic effect in polymer dispersed liquid crystals
Acousto-optic effects are demonstrated in polymer dispersed liquid crystal (PDLC) films, showing promise for applications in ultrasound sensing. The PDLC films are used to image two displacement profiles of an air-coupled flexural transducers resonant modes at 295 kHz and 730 kHz. Results are confirmed using laser vibrometry. The regions on the transducers with the largest displacements are clearly imaged by the PDLC films, with the resolution agreeing well with laser vibrometry scanning. Imaging takes significantly less time than a scanning system (switching time of a few seconds, as compared to 8 hours for laser vibrometry). Heating effects are carefully monitored using thermal imaging, and are found not to be the main cause of PDLC clearing
Self-adaptive combination of global tabu search and local search for nonlinear equations
Solving systems of nonlinear equations is a very important task since the problems emerge mostly through the mathematical modeling of real problems that arise naturally in many branches of engineering and in the physical sciences. The problem can be naturally reformulated as a global optimization problem. In this paper, we show that a self-adaptive combination of a metaheuristic with a classical local search method is able to converge to some difficult problems that are not solved by Newton-type methodsFundação para a Ciência e a Tecnologia (FCT
- …