6,507 research outputs found
ReSHAPE: A Framework for Dynamic Resizing and Scheduling of Homogeneous Applications in a Parallel Environment
Applications in science and engineering often require huge computational
resources for solving problems within a reasonable time frame. Parallel
supercomputers provide the computational infrastructure for solving such
problems. A traditional application scheduler running on a parallel cluster
only supports static scheduling where the number of processors allocated to an
application remains fixed throughout the lifetime of execution of the job. Due
to the unpredictability in job arrival times and varying resource requirements,
static scheduling can result in idle system resources thereby decreasing the
overall system throughput. In this paper we present a prototype framework
called ReSHAPE, which supports dynamic resizing of parallel MPI applications
executed on distributed memory platforms. The framework includes a scheduler
that supports resizing of applications, an API to enable applications to
interact with the scheduler, and a library that makes resizing viable.
Applications executed using the ReSHAPE scheduler framework can expand to take
advantage of additional free processors or can shrink to accommodate a high
priority application, without getting suspended. In our research, we have
mainly focused on structured applications that have two-dimensional data arrays
distributed across a two-dimensional processor grid. The resize library
includes algorithms for processor selection and processor mapping. Experimental
results show that the ReSHAPE framework can improve individual job turn-around
time and overall system throughput.Comment: 15 pages, 10 figures, 5 tables Submitted to International Conference
on Parallel Processing (ICPP'07
On Euclidean and Noetherian Entropies in AdS Space
We examine the Euclidean action approach, as well as that of Wald, to the
entropy of black holes in asymptotically spaces. From the point of view
of holography these two approaches are somewhat complementary in spirit and it
is not obvious why they should give the same answer in the presence of
arbitrary higher derivative gravity corrections. For the case of the
Schwarzschild black hole, we explicitly study the leading correction to the
Bekenstein-Hawking entropy in the presence of a variety of higher derivative
corrections studied in the literature, including the Type IIB term. We
find a non-trivial agreement between the two approaches in every case. Finally,
we give a general way of understanding the equivalence of these two approaches.Comment: 36 pages, 1 figure, LaTex, v2: references added as well as
clarificatory remarks in the introductio
General relativistic treatment of LISA optical links
LISA is a joint space mission of the NASA and the ESA for detecting low
frequency gravitational waves in the band Hz. In order to attain
the requisite sensitivity for LISA, the laser frequency noise must be
suppressed below the other secondary noises such as the optical path noise,
acceleration noise etc. This is achieved by combining time-delayed data for
which precise knowledge of time-delays is required. The gravitational field,
mainly that of the Sun and the motion of LISA affect the time-delays and the
optical links. Further, the effect of the gravitational field of the Earth on
the orbits of spacecraft is included. This leads to additional flexing over and
above that of the Sun. We have written a numerical code which computes the
optical links, that is, the time-delays with great accuracy
metres - more than what is required for time delay interferometry (TDI) - for
most of the orbit and with sufficient accuracy within metres for an
integrated time window of about six days, when one of the arms tends to be
tangent to the orbit. Our analysis of the optical links is fully general
relativistic and the numerical code takes into account effects such as the
Sagnac, Shapiro delay, etc.. We show that with the deemed parameters in the
design of LISA, there are symmetries inherent in the configuration of LISA and
in the physics, which may be used effectively to suppress the residual laser
noise in the modified first generation TDI. We demonstrate our results for some
important TDI variables
Obtaining Bounds on The Sum of Divergent Series in Physics
Under certain circumstances, some of which are made explicit here, one can
deduce bounds on the full sum of a perturbation series of a physical quantity
by using a variational Borel map on the partial series. The method is
illustrated by applying it to various examples, physical and mathematical.Comment: 33 pages, Journal Versio
Minimizing the effect of sinusoidal trends in detrended fluctuation analysis
The detrended fluctuation analysis (DFA) [Peng et al., 1994] and its
extensions (MF-DFA) [Kantelhardt et al., 2002] have been used extensively to
determine possible long-range correlations in self-affine signals. While the
DFA has been claimed to be a superior technique, recent reports have indicated
its susceptibility to trends in the data. In this report, a smoothing filter is
proposed to minimize the effect of sinusoidal trends and distortion in the
log-log plots obtained by DFA and MF-DFA techniques
Nonequilibrium phase transitions in models of adsorption and desorption
The nonequilibrium phase transition in a system of diffusing, coagulating
particles in the presence of a steady input and evaporation of particles is
studied. The system undergoes a transition from a phase in which the average
number of particles is finite to one in which it grows linearly in time. The
exponents characterizing the mass distribution near the critical point are
calculated in all dimensions.Comment: 10 pages, 2 figures (To appear in Phys. Rev. E
- …