3,655 research outputs found

    A Robust Measure of Tidal Circularization in Coeval Binary Populations: The solar-type spectroscopic Binary Population in The Open Cluster M35

    Full text link
    We present a new homogeneous sample of 32 spectroscopic binary orbits in the young (~ 150 Myr) main-sequence open cluster M35. The distribution of orbital eccentricity vs. orbital period (e-log(P)) displays a distinct transition from eccentric to circular orbits at an orbital period of ~ 10 days. The transition is due to tidal circularization of the closest binaries. The population of binary orbits in M35 provide a significantly improved constraint on the rate of tidal circularization at an age of 150 Myr. We propose a new and more robust diagnostic of the degree of tidal circularization in a binary population based on a functional fit to the e-log(P) distribution. We call this new measure the tidal circularization period. The tidal circularization period of a binary population represents the orbital period at which a binary orbit with the most frequent initial orbital eccentricity circularizes (defined as e = 0.01) at the age of the population. We determine the tidal circularizationperiod for M35 as well as for 7 additional binary populations spanning ages from the pre main-sequence (~ 3 Myr) to late main-sequence (~ 10 Gyr), and use Monte Carlo error analysis to determine the uncertainties on the derived circularization periods. We conclude that current theories of tidal circularization cannot account for the distribution of tidal circularization periods with population age.Comment: 37 pages, 9 figures, to be published in The Astrophysical Journal, February 200

    Standard Solar models in the Light of New Helioseismic Constraints II. Mixing Below the Convective Zone

    Full text link
    In previous work, we have shown that recent updated standard solar models cannot reproduce the radial profile of the sound speed at the base of the convective zone (CZ) and fail to predict the Li7 depletion. In parallel, helioseismology has shown that the transition from differential rotation in the CZ to almost uniform rotation in the radiative solar interior occurs in a shallow layer called the tachocline. This layer is presumably the seat of large scale circulation and of turbulent motions. Here, we introduce a macroscopic transport term in the structure equations, which is based on a hydrodynamical description of the tachocline proposed by Spiegel and Zahn, and we calculate the mixing induced within this layer. We discuss the influence of different parameters that represent the tachocline thickness, the Brunt-Vaissala frequency at the base of the CZ, and the time dependence of this mixing process along the Sun's evolution. We show that the introduction of such a process inhibits the microscopic diffusion by about 25%. Starting from models including a pre-main sequence evolution, we obtain: a) a good agreement with the observed photospheric chemical abundance of light elements such as He3, He4, Li7 and Be9, b) a smooth composition gradient at the base of the CZ, and c) a significant improvement of the sound speed square difference between the seismic sun and the models in this transition region, when we allow the phostospheric heavy element abundance to adjust, within the observational incertitude, due to the action of this mixing process. The impact on neutrino predictions is also discussed.Comment: 15 pages, 7 figures, to be published in ApJ (used emulateapj style for latex2e). New email for A. S. Brun: [email protected]

    Implications of a Sub-Threshold Resonance for Stellar Beryllium Depletion

    Get PDF
    Abundance measurements of the light elements lithium, beryllium, and boron are playing an increasingly important role in the study of stellar physics. Because these elements are easily destroyed in stars at temperatures 2--4 million K, the abundances in the surface convective zone are diagnostics of the star's internal workings. Standard stellar models cannot explain depletion patterns observed in low mass stars, and so are not accounting for all the relevant physical processes. These processes have important implications for stellar evolution and primordial lithium production in big bang nucleosynthesis. Because beryllium is destroyed at slightly higher temperatures than lithium, observations of both light elements can differentiate between the various proposed depletion mechanisms. Unfortunately, the reaction rate for the main destruction channel, 9Be(p,alpha)6Li, is uncertain. A level in the compound nucleus 10B is only 25.7 keV below the reaction's energetic threshold. The angular momentum and parity of this level are not well known; current estimates indicate that the resonance entrance channel is either s- or d-wave. We show that an s-wave resonance can easily increase the reaction rate by an order of magnitude at temperatures of approximately 4 million K. Observations of sub-solar mass stars can constrain the strength of the resonance, as can experimental measurements at lab energies lower than 30 keV.Comment: 9 pages, 1 ps figure, uses AASTeX macros and epsfig.sty. Reference added, typos corrected. To appear in ApJ, 10 March 199

    Strong influence of the complex bandstructure on the tunneling electroresistance: A combined model and ab-initio study

    Full text link
    The tunneling electroresistance (TER) for ferroelectric tunnel junctions (FTJs) with BaTiO_{3} (BTO) and PbTiO}_{3} (PTO) barriers is calculated by combining the microscopic electronic structure of the barrier material with a macroscopic model for the electrostatic potential which is caused by the ferroelectric polarization. The TER ratio is investigated in dependence on the intrinsic polarization, the chemical potential, and the screening properties of the electrodes. A change of sign in the TER ratio is obtained for both barrier materials in dependence on the chemical potential. The inverse imaginary Fermi velocity describes the microscopic origin of this effect; it qualitatively reflects the variation and the sign reversal of the TER. The quantity of the imaginary Fermi velocity allows to obtain detailed information on the transport properties of FTJs by analyzing the complex bandstructure of the barrier material.Comment: quality of figures reduce

    Internal rotation of subdwarf B stars: limiting cases and asteroseismological consequences

    Full text link
    Observations of the rotation rates of horizontal branch (HB) stars show puzzling systematics. In particular, cooler HB stars often show rapid rotation (with velocities in excess of 10 km/s), while hotter HB stars typically show much smaller rotation velocities. Simple models of angular momentum evolution of stars from the main sequence through the red giant branch fail to explain these effects. In general, evolutionary models in all cases preserve a rapidly rotating core. The observed angular velocities of HB stars require that some of the angular momentum stored in the core reaches the surface. To test the idea that HB stars contain such a core, one can appeal to detailed computations of trace element abundences and rotational mixing. However, a more direct probe is available to test these limiting cases of angular momentum evolution. Some of the hottest horizontal branch stars are members of the pulsating sdB class. They frequently show rich pulsation spectra characteristic of nonradially pulsating stars. Thus their pulsations probe the internal rotation of these stars, and should show the effects of rapid rotation in their cores. Using models of sdB stars that include angular momentum evolution, we explore this possibility and show that some of the sdB pulsators may indeed have rapidly rotating cores.Comment: accepted for publication in The Astrophysical Journa

    Tidal dissipation in rotating giant planets

    Full text link
    [Abridged] Tides may play an important role in determining the observed distributions of mass, orbital period, and eccentricity of the extrasolar planets. In addition, tidal interactions between giant planets in the solar system and their moons are thought to be responsible for the orbital migration of the satellites, leading to their capture into resonant configurations. We treat the underlying fluid dynamical problem with the aim of determining the efficiency of tidal dissipation in gaseous giant planets. In cases of interest, the tidal forcing frequencies are comparable to the spin frequency of the planet but small compared to its dynamical frequency. We therefore study the linearized response of a slowly and possibly differentially rotating planet to low-frequency tidal forcing. Convective regions of the planet support inertial waves, while any radiative regions support generalized Hough waves. We present illustrative numerical calculations of the tidal dissipation rate and argue that inertial waves provide a natural avenue for efficient tidal dissipation in most cases of interest. The resulting value of Q depends in a highly erratic way on the forcing frequency, but we provide evidence that the relevant frequency-averaged dissipation rate may be asymptotically independent of the viscosity in the limit of small Ekman number. In short-period extrasolar planets, if the stellar irradiation of the planet leads to the formation of a radiative outer layer that supports generalized Hough modes, the tidal dissipation rate can be enhanced through the excitation and damping of these waves. These dissipative mechanisms offer a promising explanation of the historical evolution and current state of the Galilean satellites as well as the observed circularization of the orbits of short-period extrasolar planets.Comment: 74 pages, 12 figures, submitted to The Astrophysical Journa

    Equipotential Surfaces and Lagrangian points in Non-synchronous, Eccentric Binary and Planetary Systems

    Get PDF
    We investigate the existence and properties of equipotential surfaces and Lagrangian points in non-synchronous, eccentric binary star and planetary systems under the assumption of quasi-static equilibrium. We adopt a binary potential that accounts for non-synchronous rotation and eccentric orbits, and calculate the positions of the Lagrangian points as functions of the mass ratio, the degree of asynchronism, the orbital eccentricity, and the position of the stars or planets in their relative orbit. We find that the geometry of the equipotential surfaces may facilitate non-conservative mass transfer in non-synchronous, eccentric binary star and planetary systems, especially if the component stars or planets are rotating super-synchronously at the periastron of their relative orbit. We also calculate the volume-equivalent radius of the Roche lobe as a function of the four parameters mentioned above. Contrary to common practice, we find that replacing the radius of a circular orbit in the fitting formula of Eggleton (1983) with the instantaneous distance between the components of eccentric binary or planetary systems does not always lead to a good approximation to the volume-equivalent radius of the Roche-lobe. We therefore provide generalized analytic fitting formulae for the volume-equivalent Roche lobe radius appropriate for non-synchronous, eccentric binary star and planetary systems. These formulae are accurate to better than 1% throughout the relevant 2-dimensional parameter space that covers a dynamic range of 16 and 6 orders of magnitude in the two dimensions.Comment: 12 pages, 10 figures, 2 Tables, Accepted by the Astrophysical Journa

    The Arecibo 430-MHz Intermediate Galactic Latitude Survey: Discovery of Nine Radio Pulsars

    Get PDF
    We have used the Arecibo Radio Telescope to search for millisecond pulsars in two intermediate Galactic latitude regions (7 deg < | b | < 20 deg) accessible to this telescope. For these latitudes the useful millisecond pulsar search volume achieved by Arecibo's 430-MHz beam is predicted to be maximal. Searching a total of 130 square degrees, we have discovered nine new pulsars and detected four previously known objects. We compare the results of this survey with those of other 430-MHz surveys carried out at Arecibo and of an intermediate latitude survey made at Parkes that included part of our search area; the latter independently found two of the nine pulsars we have discovered. At least six of our discoveries are isolated pulsars with ages between 5 and 300 Myr; one of these, PSR J1819+1305, exhibits very marked and periodic nulling. We have also found a recycled pulsar, PSR J2016+1948. With a rotational period of 65 ms, this is a member of a binary system with a 635-day orbital period. We discuss some of the the properties of this system in detail, and indicate its potential to provide a test of the Strong Equivalence Principle. This pulsar and PSR J0407+16, a similar system now being timed at Arecibo, are by far the best systems known for such a test.Comment: Accepted for publication in ApJ Referee format: 22 pages, 7 figure

    Tidal spin-up of stars in dense stellar cusps around massive black holes

    Get PDF
    We show that main-sequence stars in dense stellar cusps around massive black holes are likely to rotate at a significant fraction of the centrifugal breakup velocity due to spin-up by hyperbolic tidal encounters. We use realistic stellar structure models to calculate analytically the tidal spin-up in soft encounters, and extrapolate these results to close and penetrating collisions using smoothed particle hydrodynamics simulations. We find that the spin-up falls off only slowly with distance from the black hole because the increased tidal coupling in slower collisions at larger distances compensates for the decrease in the stellar density. We apply our results to the stars near the massive black hole in the Galactic Center. Over their lifetime, ~1 Msol main sequence stars in the inner 0.3 pc of the Galactic Center are spun-up on average to ~10%--30% of the centrifugal breakup limit. Such rotation is ~20--60 times higher than is usual for such stars and may affect their subsequent evolution and their observed properties.Comment: 25 pages, 7 figures. Submitted to Ap

    CP and related phenomena in the context of Stellar Evolution

    Full text link
    We review the interaction in intermediate and high mass stars between their evolution and magnetic and chemical properties. We describe the theory of Ap-star `fossil' fields, before touching on the expected secular diffusive processes which give rise to evolution of the field. We then present recent results from a spectropolarimetric survey of Herbig Ae/Be stars, showing that magnetic fields of the kind seen on the main-sequence already exist during the pre-main sequence phase, in agreement with fossil field theory, and that the origin of the slow rotation of Ap/Bp stars also lies early in the pre-main sequence evolution; we also present results confirming a lack of stars with fields below a few hundred gauss. We then seek which macroscopic motions compete with atomic diffusion in determining the surface abundances of AmFm stars. While turbulent transport and mass loss, in competition with atomic diffusion, are both able to explain observed surface abundances, the interior abundance distribution is different enough to potentially lead to a test using asterosismology. Finally we review progress on the turbulence-driving and mixing processes in stellar radiative zones.Comment: Proceedings of IAU GA in Rio, JD4 on Ap stars; 10 pages, 7 figure
    • 

    corecore