517 research outputs found
A Population Analysis of the Yellowstone Grizzly Bears
Paper published as Bulletin 40 in the UM Bulletin Forestry Series.https://scholarworks.umt.edu/umforestrybulletin/1024/thumbnail.jp
Static versus dynamic fluctuations in the one-dimensional extended Hubbard model
The extended Hubbard Hamiltonian is a widely accepted model for uncovering
the effects of strong correlations on the phase diagram of low-dimensional
systems, and a variety of theoretical techniques have been applied to it. In
this paper the world-line quantum Monte Carlo method is used to study spin,
charge, and bond order correlations of the one-dimensional extended Hubbard
model in the presence of coupling to the lattice. A static alternating lattice
distortion (the ionic Hubbard model) leads to enhanced charge density wave
correlations at the expense of antiferromagnetic order. When the lattice
degrees of freedom are dynamic (the Hubbard-Holstein model), we show that a
similar effect occurs even though the charge asymmetry must arise
spontaneously. Although the evolution of the total energy with lattice coupling
is smooth, the individual components exhibit sharp crossovers at the phase
boundaries. Finally, we observe a tendency for bond order in the region between
the charge and spin density wave phases.Comment: Corrected typos. (10 pages, 9 figures
Interaction effects and quantum phase transitions in topological insulators
We study strong correlation effects in topological insulators via the Lanczos
algorithm, which we utilize to calculate the exact many-particle ground-state
wave function and its topological properties. We analyze the simple,
noninteracting Haldane model on a honeycomb lattice with known topological
properties and demonstrate that these properties are already evident in small
clusters. Next, we consider interacting fermions by introducing repulsive
nearest-neighbor interactions. A first-order quantum phase transition was
discovered at finite interaction strength between the topological band
insulator and a topologically trivial Mott insulating phase by use of the
fidelity metric and the charge-density-wave structure factor. We construct the
phase diagram at as a function of the interaction strength and the
complex phase for the next-nearest-neighbor hoppings. Finally, we consider the
Haldane model with interacting hard-core bosons, where no evidence for a
topological phase is observed. An important general conclusion of our work is
that despite the intrinsic nonlocality of topological phases their key
topological properties manifest themselves already in small systems and
therefore can be studied numerically via exact diagonalization and observed
experimentally, e.g., with trapped ions and cold atoms in optical lattices.Comment: 13 pages, 12 figures. Published versio
Simulated responses of soil carbon to climate change in CMIP6 Earth system models: the role of false priming
Reliable estimates of soil carbon change are required to determine the carbon budgets consistent with the Paris Agreement climate targets. This
study evaluates projections of soil carbon during the 21st century in Coupled Model Intercomparison Project Phase 6 (CMIP6) Earth system models (ESMs) under a range of atmospheric composition
scenarios. In general, we find a reduced spread of changes in global soil carbon (ΔCs) in CMIP6 compared to the previous CMIP5
model generation. However, similar reductions were not seen in the derived contributions to ΔCs due to both increases in plant net primary productivity (NPP, named ΔCs,NPP) and reductions in the effective soil carbon turnover time (τs, named
ΔCs,τ). Instead, we find a strong relationship across the CMIP6 models between these NPP and τs components of
ΔCs, with more positive values of ΔCs,NPP being correlated with more negative values of
ΔCs,τ. We show that the concept of “false priming” is likely to be contributing to this emergent relationship, which leads
to a decrease in the effective soil carbon turnover time as a direct result of NPP increase and occurs when the rate of increase in NPP is
relatively fast compared to the slower timescales of a multi-pool soil carbon model. This finding suggests that the structure of soil carbon models
within ESMs in CMIP6 has likely contributed towards the reduction in the overall model spread in future soil carbon projections since CMIP5.</p
Textural variations in Neogene pelagic carbonate ooze at DSDP Site 593, southern Tasman Sea, and their paleoceanographic implications
Changes in Neogene sediment texture in pelagic carbonate-rich oozes on the Challenger Plateau, southern Tasman Sea, are used to infer changes in depositional paleocurrent velocities. The most obvious record of textural change is in the mud:sand ratio. Increases in the sand content are inferred to indicate a general up-core trend towards increasing winnowing of sediments resulting from increasing flow velocity of Southern Component Intermediate Water (SCIW), the forerunner of Antarctic Intermediate Water. In particular, the intervals c. 19-14.5 Ma, c. 9.5-8 Ma, and after 5 Ma are suggested to be times of increased SCIW velocity and strong sediment winnowing. Within the mud fraction, the fine silt to coarse clay sizes from 15.6 to 2 µm make the greatest contribution to the sediments and are composed of nannofossil plates. During extreme winnowing events it is the fine silt to very coarse clay material (13-3 µm) within this range that is preferentially removed, suggesting the 10 µm cohesive silt boundary reported for siliciclastic sediments does not apply to calcitic skeletal grains. The winnowed sediment comprises coccolithophore placoliths and spheres, represented by a mode at 4-7 µm.
Further support for seafloor winnowing is gained from the presence in Hole 593 of a condensed sedimentary section from c. 18 to 14 Ma where the sand content increases to c. 20% of the bulk sample. Associated with the condensed section is a 6 m thick orange unit representing sediments subjected to particularly oxygen-rich, late early to early middle Miocene SCIW. Together these are inferred to indicate increased SCIW velocity resulting in winnowed sediment associated with faster arrival of oxygen-rich surface water subducted to form SCIW. Glacial development of Antarctica has been recorded from many deep-sea sites, with extreme glacials providing the mechanism to increase watermass flow. Miocene glacial zones Mi1b-Mi6 are identified in an associated oxygen isotope record from Hole 593, and correspond with times of particularly invigorated paleocirculation, bottom winnowing, and sediment textural changes
Engineered 2D Ising interactions on a trapped-ion quantum simulator with hundreds of spins
The presence of long-range quantum spin correlations underlies a variety of
physical phenomena in condensed matter systems, potentially including
high-temperature superconductivity. However, many properties of exotic strongly
correlated spin systems (e.g., spin liquids) have proved difficult to study, in
part because calculations involving N-body entanglement become intractable for
as few as N~30 particles. Feynman divined that a quantum simulator - a
special-purpose "analog" processor built using quantum particles (qubits) -
would be inherently adept at such problems. In the context of quantum
magnetism, a number of experiments have demonstrated the feasibility of this
approach. However, simulations of quantum magnetism allowing controlled,
tunable interactions between spins localized on 2D and 3D lattices of more than
a few 10's of qubits have yet to be demonstrated, owing in part to the
technical challenge of realizing large-scale qubit arrays. Here we demonstrate
a variable-range Ising-type spin-spin interaction J_ij on a naturally occurring
2D triangular crystal lattice of hundreds of spin-1/2 particles (9Be+ ions
stored in a Penning trap), a computationally relevant scale more than an order
of magnitude larger than existing experiments. We show that a spin-dependent
optical dipole force can produce an antiferromagnetic interaction J_ij ~
1/d_ij^a, where a is tunable over 0<a<3; d_ij is the distance between spin
pairs. These power-laws correspond physically to infinite-range (a=0),
Coulomb-like (a=1), monopole-dipole (a=2) and dipole-dipole (a=3) couplings.
Experimentally, we demonstrate excellent agreement with theory for 0.05<a<1.4.
This demonstration coupled with the high spin-count, excellent quantum control
and low technical complexity of the Penning trap brings within reach simulation
of interesting and otherwise computationally intractable problems in quantum
magnetism.Comment: 10 pages, 10 figures; article plus Supplementary Material
Comment on the sign of the Casimir force
I show that reflection positivity implies that the force between any mirror
pair of charge-conjugate probes of the quantum vacuum is attractive. This
generalizes a recent theorem of Kenneth and Klich to interacting quantum
fields, to arbitrary semiclassical bodies, and to quantized probes with
non-overlapping wavefunctions. I also prove that the torques on
charge-conjugate probes tend always to rotate them into a mirror-symmetric
position.Comment: 13 pages, 1 figure, Latex file. Several points clarified and
expanded, two references added
Acceleressence: Dark Energy from a Phase Transition at the Seesaw Scale
Simple models are constructed for "acceleressence" dark energy: the latent
heat of a phase transition occurring in a hidden sector governed by the seesaw
mass scale v^2/M_Pl, where v is the electroweak scale and M_Pl the
gravitational mass scale. In our models, the seesaw scale is stabilized by
supersymmetry, implying that the LHC must discover superpartners with a
spectrum that reflects a low scale of fundamental supersymmetry breaking.
Newtonian gravity may be modified by effects arising from the exchange of
fields in the acceleressence sector whose Compton wavelengths are typically of
order the millimeter scale. There are two classes of models. In the first class
the universe is presently in a metastable vacuum and will continue to inflate
until tunneling processes eventually induce a first order transition. In the
simplest such model, the range of the new force is bounded to be larger than 25
microns in the absence of fine-tuning of parameters, and for couplings of order
unity it is expected to be \approx 100 microns. In the second class of models
thermal effects maintain the present vacuum energy of the universe, but on
further cooling, the universe will "soon" smoothly relax to a matter dominated
era. In this case, the range of the new force is also expected to be of order
the millimeter scale or larger, although its strength is uncertain. A firm
prediction of this class of models is the existence of additional energy
density in radiation at the eV era, which can potentially be probed in
precision measurements of the cosmic microwave background. An interesting
possibility is that the transition towards a matter dominated era has occurred
in the very recent past, with the consequence that the universe is currently
decelerating.Comment: 10 pages, references adde
- …